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Lecture 1: Introduction

Part I

Lecture notes
Lecture 1
Tu 19 Apr 2022

1 Introduction
In ADM1 we often already worked with Integer Programming and just assumed everything
is fine. In this course however, we want to find out how Integer Programming actually
works, why it is generally "hard", and under which circumstances it is "easy".

Definition 1.1 (Flavors of IP). First of all, we want to define different variants of
Integer Programming:

• Pure Integer Programming assumes all variables are integer.

• Mixed Integer Programming also allows some variables to be real.

• Binary Integer Programming, also called 0-1-Integer-Programming, re-
stricts the integer variables to B := {0, 1}. Mixed variants are also possible.

Question 1.2. Why is IP harder than LP? Naively, one would assume this should
not be the case, because our search space is smaller (at most countably infinite)!

Let’s solve the IP in ADM1-style - suppose

max
x

wTx

s.t. x ∈ Q = {x ∈ Zn : Ax ≤ b}

For simplicity, assume Q is bounded. Then the set of feasible points in Q is finite, and
therefore we can consider the polytope

conv(Q) = {x ∈ Rn | A′x ≤ b′}

for suitable A′ and b′. Notice all vertices must be in Q and thus are integral. As a
consequence, it is sufficient to solve the LP

max
x

wTx

s.t. A′x ≤ b′.

Warning. Computing A′, b′ is non-trivial! In fact, computing the integer hull conv(Q)
is what makes IP hard.
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Lecture 1: Introduction

1.1 IP is "hard"
We can gather more evidence that IP must be hard.

Theorem 1.3. Every logical statement can be expressed with integer programming.

Proof. It suffices to show that for variables x1, x2, y ∈ B we can find IPs that model
∧,∨,¬.

• y = x1 ∧ x2 can be modeled as

y ≤ x1

y ≤ x2

y ≥ x1 + x2 − 1

• y := x1 ∨ x2 can be modeled as

y ≥ x1

y ≥ x2

y ≤ x1 + x2

• y := ¬x can be modeled as

y = 1− x

Theorem 1.4. IP can model (finite) unions of polyhedra, e.g. non-convex problems.

Proof. Consider

P :=

k⋃
i=1

{x | Aix ≤ bi}︸ ︷︷ ︸
Pi

and introduce auxiliary binary variables

yi :=

{
1, if x ∈ Pi,

0, if we don’t care.

Now, assume M ∈ R large enough (Big-M method), such that

Pi ⊆ P := {x | Aix ≤ bi +M · 1}
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Lecture 2: Introduction II

for all i. Thus, we can construct following IP:

min
x

wTx

s.t. Aix ≤ bi + (1− yi)M · 1, i = 1, . . . , k,∑
i

yi = 1

This forces exactly one yi to 1, resulting that x ∈ Pi and x ∈ P is sufficient. We call
this method righthandside Big-M , short RHS. Further information can be found in
[NW99, Ch. 1].

Note. It’s also possible to handle M as a symbolic value, but this makes other things
more complicated.

Problem. Finding M big enough can make LP hard to solve, because of matrix-inversions
getting numerically unstable.

Alternative proof of Theorem 1.4. Assume that we can bound each x ∈ Pi by ui, i.e.
x ≤ ui (note that this is basically a hidden big-M !). Now we can disaggregate x for each
Pi as its own private xi ∈ Rk, and analogously introduce yi ∈ B to restrict ourselves to
one polyhedron:

min
x

wTx

s.t. Aixi ≤ yibi, i = 1, . . . , k,

xi ≤ yiui, i = 1, . . . , k,
n∑

i=1

yi = 1,

n∑
i=1

xi = x,

x, xi ≥ 0

Again, exactly one yi is equal to 1, forcing the other xj to be equal to 0, and thus setting
x to xi. We call this method upper bound on x Big-M , short UBX.

Remark 1.5. In general, it cannot be said if RHS or UBX is better. Even though
RHS only introduces n new variables as opposed to UBX’s nk variables, UBX’s
disaggregated formulation often is tighter in the sense that the LP relaxation is
closer to the integer hull.

Lecture 2
Th 21 Apr 2022

Theorem 1.6. IP can approximate any objective function infinitely good.
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Lecture 2: Introduction II

Proof. First, consider a piecewise linear objective function f with (not necessarily
equidistant) breakpoints a1, . . . , ak.

0

1

2

3

4

a1 a2 a3 a4 a5 a6
x

f
(x
)

Figure 1: A piecewise linear function
Defining the intervals Ii := [ai, ai+1] for each segment of f , we can introduce binary
variables yi such that

yi =

{
1, if x ∈ Ii,

0, otherwise

Note that for x ∈ Ii, x is a convex combination of ai, ai+1. Therefore, we can express x as
a linear combination of all breakpoints ai, with the additional constraint that all except
2 scalars must be 0. By linearity, this also holds for f(x). Translating into IP:

min
λ

∑
i

λif(ai)

s.t. λ1 ≤ y1,

λk ≤ yk−1,

λi ≤ yi−1 + yi, i = 2, . . . , k − 1,∑
i

yi = 1

One can show this already suffices to model any cost function: For suitable choices of
breakpoints we can approximate any function by piecewise linear functions. Details can
be found in [AMO93, Ch. 14] or [NW99, Ch. 1].

Conclusion 1.7. Summarizing, following facts that hold for IP, but not LP, deliver
an intuition why IP should be hard:

1. Consider a polyhedron P = {x ∈ Rn | Ax = b} and its integer hull Q. Even
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Lecture 3: Hardness

though P can be "smooth" (e.g. cube), its integer hull can look more like a
"disco ball" with many facets.

2. In real life, many problems can be modeled with decision variables. IP can
handle this, see Theorem 1.3.

3. Additionally, IP also can handle non-convex problems, see Theorem 1.4 and
Theorem 1.6.

1.2 Representation of IPs
For a given IP, a set Q of feasible points can be formulated by many polyhedra P .

Example 1.8. Consider

Q := {0000, 1000, 0100, 0010, 0110, 0101, 0011} ⊆ Z4.

Then we can give following representations Pi such that Pi is an integer hull of Q:

P1 = {x ∈ R4 | 93x1 + 49x2 + 37x3 + 29x4 ≤ 111}
P2 = {x ∈ R4 | 2x1 + x2 + x3 + x4 ≤ 2}
P3 = {x ∈ R4 | 2x1 + x2 + x3 + x4 ≤ 2,

x1 + x2 ≤ 1,

x1 + x3 ≤ 1,

x1 + x4 ≤ 1}

One can show that P3 ⊊ P2 ⊊ P1.

Example 1.9. A real-life example is the problem of placing facilities. Given n stores
and m warehouses, decide which warehouse should be build at all, and which should
deliver which store (for some cost function). Let yi ∈ B denote if warehouse i should
be opened, and xij if warehouse i should serve store j. Then

P1 := {x | ∀i :
∑
j

xij ≤ myi},

P2 := {x | ∀i, j : xij ≤ yi}

both represent the condition to only serve stores from warehouses that are opened.
Notice that P2 ⊊ P1 is tighter, but has n ·m instead of n constraints.
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Lecture 3: Hardness

1.3 Complexity
In order to define hardness, it is useful to define complexity first. We can use big-O for
this. During the rest of the lecture, we had a recap on this. For details, refer to canonical
sources. Lecture 3

Tu 26 Apr 2022

2 Hardness
Prior, we only gave intuition why IP is "harder" than LP. In order to analyze IP more
thoroughly, we now want to work towards a formal definition of hardness of problems.
Basically, there are two types of problems for now:

Definition 2.1 (Problem types). We differentiate between

• decision problems, which can be answered by Yes or No only, and

• optimization problems, which seeks for a numerical value minimizing a
certain (cost) function.

For the beginning, we can cheat and restrict ourselves to decision problems.

Example 2.2. Possible decision problems could be:

1. Does there exist a Hamiltonian cycle?

2. Is the LP feasible?

Question 2.3. How do we model an optimization problem as an decision problem?

Answer. We can simply introduce a parameter z which we use as a bound for the value
we want to optimize.

Example 2.4. Possible reformulations of optimization problems are therefore:

1. Does there exist a feasible x with cTx ≤ z?

2. Does there exist a spanning tree with cost less than z?

3. Is there a clique with size less than z?

Definition 2.5. A clique C is a subset of nodes V of a graph G = (V,E) s.t. for
all i, j ∈ C it must hold true that (i, j) ∈ E.

2 HARDNESS 11



Lecture 3: Hardness

Theorem 2.6. When we model an optimization problem as a decision problem,
then there exist a oracle-polynomial way to solve the optimization problem using
the decision problem as an oracle.

Algorithm 1: Oracle-polynomial algorithm for max-clique
Use binary search to find z∗ in O(log n)
G′ ← G = (V,E)
for i = 1, ..., n do

G′′ ← G′, but remove all edges incident to node i
if Call of decision oracle on G′′, z∗ is true then

G′ ← G′′

end
end

Theorem 2.7. Final G := G′ is a max-clique.

Proof. The size of a max clique in G′ never goes below z∗. Therefore, there exists a clique
C ⊆ G with |C| = z∗. Suppose G has more than z∗ nodes. Then i ∈ G \C. But then the
algorithm would have deleted this node!

Corollary 2.8. If we have an optimal oracle, then one can solve decision version in
oracle-polynomial time using the optimal oracle.

Conclusion 2.9. Optimization and decision version differ only by a polynomial
factor of complexity. Therefore, either both are easy or both are hard.

Definition 2.10 (Certificate). Given an instance of any problem with size n, a
certificate is a binary-encoded string that is generated by some algorithm specific
to the problem, taking the instance as input. We say the certificate is a succinct
certificate, if its length is polynomial in the input size n.

Definition 2.11 (NP). We say a (decision) problem P lies in NP, if for all Yes-
instances I there exists a succinct certificate C and a certificate checking algorithm
A that confirms A(I, C) in polynomial time.

Theorem 2.12. Max-clique lies in NP
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Lecture 3: Hardness

Proof. We use our clique C directly as the certificate.
Algorithm 2: Certificate checking for max-clique
if |C| < z then

return NO
end
else

for i, j ∈ C do
if (i, j) ̸∈ E then

return NO
end

end
end
return YES

Remark 2.13. Note that we don’t care for No-instances! In order to verify them
we would need to list all

(
n
z

)
subsets (for max-clique), which is not polynomial.

Theorem 2.14. P ⊆ NP

Proof. Let P ∈ P. Then there exists a polynomial algorithm A. Record the steps of A
on an instance I and use this as a polynomial certificate.

Theorem 2.15. LP ∈ NP, using decision variant if there is any feasible x.

Proof. If feasible, there exists a basic feasible solution x∗. We verify by checking Bx∗ = b.
One can show that x∗ has polynomial bits.

Let’s also have a look at the canonical NP problem:

Definition 2.16 (Satisfiability problem, SAT). Consider n logical variables v1, ..., vn,
allowing also the negated literals vi. Additionally, we have m clauses C1, ..., Cm,
which are subsets of the literals. Determining if there is an assignment such that
the overall clause is true (i.e. each subclause has at least one true literal) is known
as the satisfiability problem, for short SAT.

Example 2.17. A few examples:

1. (v1 ∨ v2 ∨ v3) ∧ (v1 ∨ v2 ∨ v3)
This instance is true for v = (110).
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Lecture 4: NP-completeness

2. (v1 ∨ v2) ∧ (v1 ∨ v2) ∧ (v2 ∨ v3) ∧ (v3 ∨ v4)
One can check that this instance is always false.

Theorem 2.18. SAT ∈ NP

Proof. The satisfiability truth assignment is a succinct certificate.

Theorem 2.19 (Cook). If P ∈ NP, then P has an oracle-polynomial algorithm
with SAT as an oracle.

Proof. Suppose P ∈ NP, then P has a non-deterministic Turing Machine with polynomial
size. Encode the Turing Machine as a logical formula such that it is true iff P is a Yes-
instance. Lecture 4

Th 28 Apr 2022
We remind ourselves that IP can formulate logic, and therefore can encode SAT formu-
las.

Example 2.20. Translating from Example 2.17:

1.

x1 + x2 + x3 ≥ 1

(1− x1) + (1− x2) + (1− x3) ≥ 1

x ∈ B3

2.

x1 + x2 ≥ 1

(1− x1) + x2 ≥ 1

(1− x2) + x3 ≥ 1

(1− x2) + (1− x3) ≥ 1

x ∈ B3

Definition 2.21 (Reduction). We say P ∝ Q ("P reduces to Q") if there exists a
polynomial algorithm A such that

1. for all instances I ∈ P , A(I) is element of Q,

2. I is Yes-preserving, e.g. I is Yes-instance of P iff A(I) is Yes-instance of Q.

2 HARDNESS 14



Lecture 4: NP-completeness

Definition 2.22 (NP-complete). A problem P is NP-complete, if

1. P ∈ NP, and

2. for all Q ∈ NP it holds that Q ∝ P .

We call the set of all NP-complete problems NPC.

Corollary 2.23. Using our new definition, it follows immediately from Theorem 2.19
that SAT ∈ NPC.

Proof Strategy. In order to show a problem P is NP-complete we first describe a way
to construct a succinct certificate, and state an algorithm that describes how we use the
certificate to verify a Yes-instance is indeed a Yes-instance.

After that, we find a suitable problem Q, which is known to be NP-complete, and try
to proof Q ∝ P . We do this by converting each instance of Q into an instance of P in
polynomial time, and verify that the conversion is Yes-preserving.

Theorem 2.24. SAT is as hard as 0-1-IP

Proof. We know 0-1-IP ∈ NP, and therefore 0-1-IP ∝ SAT. It remains to show SAT ∝
0-1-IP: Let I ∈ SAT with clauses cj = l1, ..., lk. We convert each clause to the inequality
l1 + ... + lk ≥ 1 for binary l. As shown in Theorem 1.3, this encodes exactly the logic
formula.

Definition 2.25 (3SAT). We define 3SAT as a variant of SAT where we only allow
clauses with exactly 3 literals, e.g. |Cj | = 3.

Theorem 2.26. 3SAT ∈ NPC

Proof. 3SAT ∈ NP follows directly from SAT ∈ NP. It remains to show SAT ∝ 3SAT.
Consider clause Cj = (l1 ∨ ... ∨ lk) for k > 3. Add k − 3 new variables y2,j , ..., yk−2,j and
replace Cj with

(l1 ∨ l2 ∨ y2,j) ∧ (y2,j ∨ l3 ∨ y3,j) ∧ ... ∧ (yk−2,j ∨ lk−1 ∨ lk)

One can figure out via proof tables and induction that this is indeed Yes-preserving.

Definition 2.27 (Node cover, NC). Given graph G = (N,E), we say C ⊆ N is a
node cover if for every edge in E at least one of the nodes is in N . We define NC
as the decision problem if there is a node cover of at most size z.

2 HARDNESS 15



Lecture 4: NP-completeness

Theorem 2.28. NC ∈ NPC

Proof. We can easily check if for a given C, it is indeed a node cover in polynomial time.
Therefore NC ∈ NPC. We want to reduce from 3SAT:

va va vb vb vc vc

l2j

l1j l3j

Figure 2: Schema of how to use triangle "gadgets" for a single clause Cj

Consider an instance of 3SAT and construct a graph as shown in Figure 2, e.g. for each
variable vi construct an edge between nodes vi and vi, and for each clause Cj construct a
triangle l1j , l2j , l3j . Now, connect each node of the triangle with the corresponding literal
in the clause (the orange edges). Using this construction, we want to proove that there
is a node cover of size n+ 2m iff the 3SAT instance is valid.

Suppose the 3SAT instance is feasible. We use the n nodes of the feasible labeling corre-
sponding to the literals. Now, because the labelling is valid, at least one orange edge per
triangle must be covered, by construction. Therefore, we can choose 2 additional nodes
per triangle that cover the triangle and the remaining orange edges.

On the other side, suppose there is a node cover of size (at most) n+2m. Analoguous, each
triangle must have at least 2 chosen nodes to cover each edge, and each literal-pair at least
1 node, meaning our bounds must actually be exact to not overshoot n+2m. Therefore,
the node cover represents a valid truth assignment, which is also a valid labelling, because
each clause has a remaining orange edge, which is covered by one of the literals.

Therefore, our reduction is Yes-preserving.

Remark 2.29. NC in bipartite graphs is in P.

Definition 2.30 (Independent set, IS). For a graph G = (N,E) we call S ⊆ N a
independent set (or stable set) if no edge has both nodes in S. The decision
problem, called IS, if there is a independent set of size at least z.

2 HARDNESS 16



Lecture 4: NP-completeness

Theorem 2.31. IS ∈ NPC

Proof. IS ∈ NP trivial. We can also easily show that C is a node cover iff N \ C is
stable.

Theorem 2.32. CLIQUE ∈ NPC

Proof. CLIQUE ∈ NP trivial. We can also easily show that C is a clique in G = (N,E)
iff C is stable in (N,E).

Definition 2.33 (Partition, PART). Given a1, ..., an ∈ Z+. The decision problem if
there is a set S ⊆ {1, ..., n} such that∑

i∈S

ai =
∑
i ̸∈S

ai

is called partition problem, PART.

Theorem 2.34. PART ∈ NPC

Proof Sketch. We can show [KV18, Ch. 15.5]:

SAT ∝ 3-dim match ∝ subset sum ∝ PART

Remark 2.35. Still, PART has a pseudopolynomial algorithm using dynamic pro-
gramming.

Definition 2.36. If a (numerical) problem is only NP-complete if it depends on
the size of the numbers (e.g. polynomial in the unary bit model), we call it weakly
NP-complete. Otherwise, we call it strongly NP-complete.

Definition 2.37 (3-partition, 3PART). Given the numbers a1, ..., a3k ∈ Z. The
problem, if we can partition these numbers in sets of 3 such that every set has the
same value, is called 3-Partition, or 3PART.

Theorem 2.38. 3PART is strongly NP-complete.

2 HARDNESS 17



Lecture 5: Ellipsoid method & SEP vs OPT

Remark 2.39. Only weakly NP-complete problems could have pseudopolynomial
algorithms (except P = NP).

Lecture 5
Tu 03 May 2022

Definition 2.40 (NP-hard). Consider an optimization problem P . Formally, we
can’t have P ∈ NP, but because of Theorem 2.6 we can introduce the notion to call
P NP-hard, if its decision variant is NP-complete.

Definition 2.41 (co−NP). We say P ∈ co−NP, if we have a succinct certificate
for verifying No-instances.

Example 2.42. Given a matrix A. We call it totally unimodular, if every square
submatrix has determinant 0 or 1. Deciding if A is totally unimodular is in co−NP,
because giving a failing submatrix as a succinct certificate is easy.

Theorem 2.43. The decision version of LP is in co−NP.

Proof. The answer to the decision problem is No iff

1. the system is infeasible, or

2. the system is feasible, but the optimal cost is larger than the z we want.

Because both can be decided with the tools we have in polynomial time, LP is indeed in
co−NP.

Definition 2.44 (co−NP-complete). Analoguous to Definition 2.22, we can also
define co−NP-completeness, or co−NPC, for the "most difficult" problem in
co−NP.

Remark 2.45. It holds that co−NPC ∩NPC = ∅, except P = NP. See [KV18].

Open Question 2.46. Is P = NP?

2 HARDNESS 18



Lecture 5: Ellipsoid method & SEP vs OPT

NP co−NP
P

NPC co−NPC

vs. P = NP = co−NP

Figure 3: Landscape of problems depending if P = NP

3 Complexity differences between IP and LP

Some 0-1-IPs are easy, such as bipartite matching, or the assignment problem, even though
IP ∈ NPC. In the following section, we want to give intuition, why there are different
complexities in IP.

3.1 Optimization vs. Separation
Recall (Ellipsoid Algorithm). As discussed in ADM1, the ellipsoid method can be
used to determine feasibility of LPs in polynomial time. One could also call the ellipsoid
method a fancy "n-dimensional binary search". A rough draft how the algorithm worked:

1. Reduce optimization version to decision version and introduce bound L = mn ·
log(max abs. data)

2. Volume-based argument: If the LP is feasible, there is a solution within the centered
cube with length 2L.

3. Volume is zero: Perturb the problem to Ax ≤ b+ 2−L, which maintains feasibility,
but now has positive volume.

For details, refer to the slides from ADM1.

Definition 3.1. Given a polyhedron P with an associated cost function. We want
to introduce two distinct problem types:

• The optimization problem OPT denotes the problem of finding an optimal
x∗ ∈ P .

• The separation problem SEP denotes the problem of deciding if x ∈ P , or
else stating a separating hyperplane.

Remark 3.2. The key step of the ellipsoid method is to find a hyperplane that

3 COMPLEXITY DIFFERENCES BETWEEN IP AND LP 19



Lecture 5: Ellipsoid method & SEP vs OPT

separates the current x from the considered polyhedron. Especially, if SEP ∈ P,
then OPT ∈ P. The converse can also be proven.

Definition 3.3. Let Q be the class of full-dimensional polytopes with 0 inside. We
define the polar Q∗ for Q ∈ Q as

Q∗ := {y ∈ Rn | ∀x ∈ Q : yTx ≤ 1}.

Theorem 3.4. Considering this class of polytopes, one can proove [KV18, Ch. 4,
Thm. 4.22]:

1. Q∗ is also a full-dimensional polytope with 0.

2. (Q∗)∗ = Q

3. v is a vertex of Q iff vT y ≤ 1 is a facet of Q∗

Theorem 3.5. Suppose we can solve OPT on Q ∈ P with algorithm A. Then we
can use A as an oracle to solve SEP on Q∗ in polynomial time.

Proof. Suppose Q∗ ∈ Q∗, and we want to separate y0. Use A to solve OPT on Q with
objective function max(y0)Tx to get x∗ ∈ Q. This yields two cases:

• (y0)Tx∗ ≤ 1: Then this holds for all x ∈ Q, and thus y0 ∈ Q∗ by definition.

• (y0)Tx∗ > 1: Consider hyperplane (x∗)T y. From x∗ ∈ Q it follows that for all
y ∈ Q∗, that (x∗)T y ≤ 1, but (x∗)T y0 > 1. Thus, we found a separating hyperplane.

Theorem 3.6. SEP ∈ P for Q iff OPT ∈ P for Q

Proof. Using what we proven so far:

OPT ∈ P for Q 3.5
=⇒ SEP ∈ P for Q∗

Ellips.
=⇒ OPT ∈ P for Q∗ 3.5

=⇒ SEP ∈ P for (Q∗)∗ = Q
Ellips.
=⇒ OPT ∈ P for Q

3 COMPLEXITY DIFFERENCES BETWEEN IP AND LP 20
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Conclusion 3.7. There is a close relationship between OPT and SEP:

Complexity
OPT

⇐⇒ Integrality
SEP

Lecture 6
Th 05 May 2022

Theorem 3.8 (Minkowski). For a polyhedron P it holds x ∈ P iff there exist vertices
v1, ..., vk and rays r1, ..., rl, such that∑

i

λvi +
∑
j

µjrj = x

∑
i

λi = 1

λ, µ ≥ 0.

Minkowski’s Theorem is also known as Resolution Theorem.

Proof. See ADM1.

Definition 3.9. We have different variants of representing a polyhedron P :

• The H-representation (from "hyperplane") is given by P = {x | Ax ≤ b}.

• The V-representation (from "vertex") is given by Theorem 3.8.

Conclusion 3.10. Depending on the representation we have, we have different ways
to solve OPT and SEP:

H-representation V-representation
OPT LP Simplex/Ellipsoid Brute Force
SEP Brute Force LP (Exercise 4.1)

Example 3.11. Consider the n-cube Cn := {x ∈ Rn | −1 ≤ xi ≤ 1}. It has 2n
facets, but 2n vertices.

Now, consider the polar of Cn, which can be shown to be the n-octahedron On.
Remember the intuition, that the polar exchanges vertices with facets. Indeed it
holds that now, we have 2n facets, but only 2n vertices.
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(−1, 1) (1, 1)

(1,−1)(−1,−1)

(−1, 1)

polar←→

(0, 1)

(1, 0)

(0,−1)

(−1, 0)

(0, 1)

Figure 4: 2-cube vs. 2-octahedron

(−1, 1, 1)

(−1, 1, −1)

(1, 1, −1)

(−1, 1, −1)

(−1, −1, −1)(−1, −1, −1)

(−1, −1, 1)

(−1, 1, 1)

(1, 1, 1)

(1, 1, −1)

(1, −1, −1)

(−1, −1, −1)

(1, −1, −1)

(1, −1, 1)

(−1, −1, 1)

(1, −1, 1)

(1, 1, 1)

polar←→

(0, 1, 0)
(−1, 0, 0)

(0, 0, −1)

(0, 1, 0)

(0, 0, 1)

(0, −1, 0)
(1, 0, 0)

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)(1, 0, 0)

(0, 0, −1)

(0, −1, 0)

(−1, 0, 0)

(0, 0, 1)

Figure 5: 3-cube vs. 3-octahedron

Information. Polymake is a tool for converting programmatically between H-represen-
tation and V-representation.

3.2 Certificate construction
Question 3.12. Consider the problem of finding a solution x to a linear or integer
system. How do we construct succinct certificates of feasibility and infeasibility?

In order to answer this question, we will have to look at different kinds of systems each
on their own. For the following theorems, we will consider two different systems every
time, and show that the solutions can be used as the certificate we seek for.

Theorem 3.13. Exactly one of the following systems is feasible:

Ax = b vs. yTA = 0

yT b = 1
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In particular, the left system delivers a certificate of feasibility, whereas the right a
certificate of infeasibility.

Proof. Suppose both are feasible. Then we have solutions y0, x0, and can construct
following contradiction:

Ax0 = b

⇔ (y0)TA︸ ︷︷ ︸
0

x0 = (y0)T b = 1

It remains to prove at least one system is feasible. We can use Gaussian Elimination for
that: Gaussian Elimination either yields a solution x0 we can use as a succinct certificate
for feasibility, or determine it is infeasible by yielding the row multiplier y0 in order to
generate 0Tx = 1 as a succinct certificate of infeasibility.

Warning. Gaussian Elimination is not polynomial in its natural variant because of num-
bers generated during the algorithm. Nonetheless, if careful and using certain tricks,
Gaussian Elimination is polynomial.

Remark 3.14. Theorems stating that exactly one of two systems have a solution
are called Theorem of the Alternative.

Theorem 3.15 (Farkas’ Lemma). Exactly one of the following systems is feasible:

Ax ≤ b vs. yTA = 0

yT b < 0

y ≥ 0

In particular, the left system delivers a certificate of feasibility, whereas the right a
certificate of infeasibility.

Proof. Suppose both are feasible. Analoguous to previous proof we can see the contra-
diction:

Ax0 ≤ b

⇔ (y0)TA︸ ︷︷ ︸
0

x0 ≤ (y0)T b < 0

At least one system is feasible, which we can see by using the Ellipsoid Method to get a
feasible x as a feasibility certificate for Ax ≤ b. Otherwise, Ax ≤ b is infeasible. In that
case we can use Phase 1 of the Simplex Method to generate 0Tx ≤ z (for some z ∈ Z−)
and use the extracted row multipliers y as an infeasibility certificate. Note that this y
solves the right system.
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Conclusion 3.16. We already knew from Theorem 2.15 and Theorem 2.43, that
previous feasibility problems both lie in NP∩co−NP. Thus, we found that Gaussian
Elimination is the suspected polynomial algorithm.

Definition 3.17 (Diophantine equations). An equation of the form Ax = b, for
x ∈ Zn, is called diophantine equation.

Theorem 3.18. Exactly one of following systems is feasible:

Ax = b vs. yTA ∈ Zn

x ∈ Zn yT b ̸∈ Z

In particular, the left system delivers a certificate of feasibility, whereas the right a
certificate of infeasibility.

Proof. Suppose both are feasible. Then

Ax0 = b

⇔ (y0)TA︸ ︷︷ ︸
Zn

x0︸︷︷︸
Zn

= (y0)T b︸ ︷︷ ︸
̸∈Z

We can use the Hermite Normal Form algorithm to show that at least one system is
feasible. Note that the Hermite Normal Form can be calculated in polynomial time.

Problem. IP is defined as finding x ∈ Zn for Ax ≤ b. We have already shown that IP ∈
NPC (see Theorem 2.24), meaning that certificates cannot be calculated in polynomial
time (unless P = NP).

Conclusion 3.19. Summing everything up, we can summarize our findings for cal-
culation of feasibility certificates in following table:

continuous integer
= Gaussian Elim./Phase 1 Hermite Normal Form
≤ Linear Programming not possible

The problem with integer inequality systems is its missing duality, e.g. there is no
way of generating succinct certificates for verifying infeasibility, making it impossible
to use the Theorem of the Alternative.

Remark 3.20. If we have an LP in standard form, we can also formulate a Theorem
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of the Alternative using Farkas’ Lemma:

Ax = b Ax ≤ b

x ≥ 0 ⇐⇒ −Ax ≤ −b
−x ≤ 0

3.15
vs.

(y1)TA− (y2)TA− (y3)T = 0 yTA ≥ 0

(y1)T b− (y2)T b < 0 ⇐⇒ yT b < 0

y1, y2, y3 ≥ 0 y free

Note for the last equivalence that we used y = y1−y2 with y1, y2 ≥ 0, and interpreted
y3 as slack.

Theorem 3.21 (Gourdan’s Theorem). Exactly one of following systems is feasi-
ble:

Ax < 0 vs. yTA = 0

y ≥ 0

y ̸= 0

Proof. Consider a feasible x such that Ax0 < 0. Then we can scale and get x0 such that
Ax ≤ −1, and, again, using Theorem 3.15, yields our other system. Note that yT (−1) < 0
is equivalent to

∑
yi > 0, implying with y ≥ 0 that y ̸= 0.

Note. We can also check that both systems cannot be feasible:

Ax0 < 0

⇔ (y0)TA︸ ︷︷ ︸
0

x0 < (y0)T 0︸ ︷︷ ︸
0

,

which is a contradiction.
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3.3 Non-linearity in LP

Consider an LP with lower and upper bounds and its dual:

min
x

cTx

s.t. Ax = b,

l ≤ x ≤ u

⇐⇒

min
x

cTx

s.t. Ax = b,

x ≥ l,

−x ≥ −u,
x free

Dual←→

max
y, λ, µ

bT y + lTλ− uTµ

s.t. yTA+ λT − µT = cT ,

λ, µ ≥ 0,

y free

Note that we can write the dual constraint as

λT − µT = cT − yTA,

allowing an interpretation of λT as the positive part of cT − yTA, and µT as the negative
part. Reformulating thus yields

max
y, λ, µ

bT y + lT (cT − yTA)+ − uT (cT − yTA)−

s.t. y free

Note that now, the system doesn’t seem to have any constraints left, but clearly this
cannot be true. In fact, cT −yTA)+ and cT −yTA)− are piecewise linear only! Therefore,
in order to get a valid LP - this is exactly what the original formulation did.

slop
e lj

slo
pe

u j

(cT − yTA)j

ob
j.

va
l.

in
j-

co
m

p.

As can be seen in the plot, the cost function is concave! Lecture 7
Tu 10 May 2022

Note that the function isn’t smooth, but still we can define a notion for its gradient:

Definition 3.22. We call the set of possible "derivatives" in a point of a function
the subdifferential.

Let’s visualize using previous example. Let’s also consider the implications for optimal
solutions from complementary slackness:
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cj

slope lj

slo
pe

u j

(cT − yTA)j

ob
j.

va
l.

in
j

lj uj

slope cj

(cT − yTA)j

ob
j.

va
l.

in
j

Figure 6: Exemplary dual and primal cost function in jth component with subset of
subdifferentials in red

• For λj > 0 follows that cj > (yTA)j ("expensive"), and by CS xj = lj .

• For µj > 0 follows that cj < (yTA)j ("cheap"), and by CS xj = uj .

• For cj = (yTA)j ("neutral") follows by CS that lj ≤ xj ≤ uj .

Definition 3.23 (Kilter diagram). We can visualize variable-constraint pairs of com-
plementary slackness with a Kilter diagram.

Example 3.24. Again, using our system, we can draw the primal and dual Kilter
diagram:

lj uj

cj

"e
xp

en
si

ve
"

"c
he

ap
"

xj

(y
T
A
) j

cj

lj

uj

(yTA)j

x
j

Fact 3.25 (Convex duality). If term j of the primal objective is fj(xj) for convex
fj , then term j of the dual objective is −f•

j (yj), such that yj is the dual of xj .

We’re using f• as the convex conjugate of f , which has the property that (f•)• =
f .

Now, consider some piecewise linear convex function with slopes mi and breakpoints bi.
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0

1

2

3

4

m1

m 2

m
3

m
4

b0 b1 b2 b3 b4
xj

f j
(x

j
)

We can express values on this function with following LP:

min
x

m1xj,1 +m2xj,2 +m3xj,3 + . . .

s.t. 0 ≤ xj,i ≤ bi − bi−1, i = 1, . . . ,

xj = xj,1 + xj,2 + xj,3

Note that this forces the LP to use as much of xj,i as possible before moving to the next
component.

Conclusion 3.26. Piecewise linear convex problems don’t need IP.

Note. In fact, IP is only needed for non-convex/non-concave functions, see [AMO93,
Ch. 14].

4 Approaches to IP

Even though IP is NP-complete, we still want to solve them as they model many real-
world problems. For certain cases, though, we can use tricks to make calculation easier:

1. If the IP only has integer vertices for all b, we can just use LP.

2. If the IP only has integer vertices for a single useful b, we can at least use LP for
this b, and might derive useful information anyway.

3. We could get a direct combinatorial algorithm that doesn’t use LP, using OPT-SEP-
duality.

4. For a fixed (small) dimension, we can solve IP in polynomial time.

5. If we are only interested in good solutions, we could use approximation algorithms
and heuristics.
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6. Alternatively, solve the relaxed LP and round to an IP solution.

7. We can relax "bad" constraints and variables.

8. Just use Cutting Planes.

4.1 Integer-optimal solutions in LP for special coefficient matrices
Recall. In ADM1 we proved that there are combinatorial problems that can be solved
using LP nonetheless, e.g. Max-Flow, Min-Cut, Bipartite Matching, Min-Cost-Flow etc.

Question 4.1. Why do exactly these problems have the property of integer vertices?

Given an optimal vertex solution x∗ = (x∗
B , 0) = (B−1b, 0) with basis B to an LP. By

Cramer’s Rule, it holds for all j ∈ B, that

x∗
j =

integer︷ ︸︸ ︷
det(B1, B2, ..., bj , ..., Bn)

det(B)
.

Thus, if |det(B)| = 1, then x∗ is integer.

Definition 4.2 (Totally unimodular). A matrix A is totally unimodular, if for
all square submatrices B of A it holds that det(B) ∈ {−1, 0, 1}.

Note. Obiviously, A itself must consist only of {−1, 0, 1} entries in order to be totally
unimodular.

Theorem 4.3. Given A is totally unimodular. Then all optimal vertices x∗ are
integer for all righthandside b’s. Conversely, if all vertices of {x | Ax ≤ b, x ≥ 0} are
integer for all righthandside b, then A is totally unimodular.

Proof. See [NW99, Thm 2.5 III 1.2].

Definition 4.4. Let G = (N,A) be a directed graph, T a spanning tree of G, and
S ⊆ A. We construct a matrix D ∈ R|N−1|,|S|, such that every column corresponds
to an arc (u, v) ∈ S, and every row to an arc in T . Consider the undirected (unique)
path from u to v in T . We set in each column every entry to 1, where we used the
arc as supposed, to −1, if we used the arc backwards, and 0 otherwise. Then D is
called a tree-path, or network matrix.

Example 4.5. Given following graph:
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1

2 3 4

5

6

Then a network matrix of this graph is given by


1→ 4 2→ 6 3→ 1 4→ 5 5→ 1

1→ 2 1 0 −1 0 −1
2→ 3 1 0 −1 0 −1
3→ 6 0 1 0 0 0
3→ 5 0 0 0 1 −1
4→ 3 −1 0 0 1 0



Theorem 4.6. Any network matrix M is totally unimodular.

Proof. Every submatrix of a network matrix M is again a network matrix (deleting a row
contract the arc of T ). Thus it suffices to show that every square network matrix Ms has
det(Ms) ∈ {−1, 0, 1}. We prove by induction over dimension d of Ms.

For d = 1 this is clear. Thus, consider the statement true for some d. Let node l be a leaf
of the spanning tree T , and consider row l→ k. Using a case distinction:

• 0 arcs in S hit l. Then row l→ k is 0, and thus det(Ms) = 0.

• Exactly 1 arc in S hits l. Then row l→ k is a unit vector, and block decomposition
yields

det(Ms) = det


±1 0 0
∗

∗
M ′

s

 = ±det(M ′
s)

• Otherwise, there are at least 2 arcs in S that hit l. Let l → i and l → j be
two of them. Then we can subtract column l → i from l → j and zero out the
first entry of l → j. Additionally, the column now is the incidence vector of
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i → j, by uniqueness of tree paths. As a consequence, our matrix is still a net-
work matrix. Therefore, iteratively applying this step until a single 1 remains let
us use previous case, noting that column subtraction only negates the determinant.

l k G

i

j

l→ i

l→ j

(l→
j)−

(l→
i)

Corollary 4.7. A node-arc incidence matrix of a directed graph is totally unimod-
ular.

Proof. Add root r and for every node i arcs r → i. Because every column has form
[0, . . . ,−1, . . . ,−1, . . . , 0], this corresponds to i→ r → j.

Corollary 4.8. A node-edge incidence matrix of a bipartite graph is totally uni-
modular.

Proof. Add root r, for every i ∈ L arcs i→ r, and for every j ∈ R arcs r → j. Note that
columns refer to i→ r → j

Remark 4.9. Not all node-edge incidence matrices are totally unimodular! For
example

1 2

3

with det

1 0 1
1 1 0
0 1 1

 = 2

Definition 4.10. A 0-1-matrix A has the consecutive ones-property if the 1’s
in each row do not have any 0’s between them, i.e. 0001111100.

Corollary 4.11. A matrix A with consecutive ones-property is totally unimodular.

Proof. Suppose T is a line of connected nodes. For each row, construct an arc from the
first 1 to the last 1. Then A is a network matrix for this graph.
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Note that there are totally unimodular matrices that aren’t network matrices. Further-
more, it’s also possible to combine totally unimodular matrices to get new ones.

Theorem 4.12. Let A1, A2 be two totally unimodular matrices. Then(
A1 0

0 A2

)
is also totally unimodular.

Theorem 4.13 (Seymour). The set of totally unimodular matrices is fully defined
by

• all network matrices,

• two additional 5× 5 matrices, and

• three different composition operations, e.g. Theorem 4.12.

Conclusion 4.14. Network problems are the easiest IPs.
Lecture 8
Th 12 May 2022

4.2 Integer-optimal solutions in LP for special RHSs

Definition 4.15. Given a graph G = (N,E) and cost vector c ∈ RE . Finding
a spanning tree T such that c(T ) is minimal is called Minimal Spanning Tree
problem, short MST.

Recall. In ADM1 we learned that we can use Kruskal’s algorithm to find a MST in
polynomial time. Kruskal sorted the edges and added edges in this order if it wouldn’t
create a cycle.

On the other hand, there is also an LP formulation:

min
x

cTx

s.t. x(γ(K)) ≤ |K| − 1, K ⊊ N,

x(E) = n− 1,

x ≥ 0

Tom doesn’t like the LP formulation, though, because

1. "min" and "≤" just feel wrong,

2. rather than x(γ(K)), we should use x(S) ≤? for S ⊆ E.
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We can circumvent this problems with following LP, for some M >> maxi wi and w =
M − c, and some magic function r:

max
w

wTx

s.t. x(S) ≤ r(S), S ⊆ E,

x ≥ 0

(1)

Let’s have a closer look at r(S), and define it as the maximum number of edges we can
choose in S without creating a cycle.

Let’s also define cc(S) as the number of connected components in (N,S).

Theorem 4.16. For a graph G = (N,E) it holds that r(S) = n− cc(S).

Proof. Let C1, ..., Ck be node sets of connected components of (N,S), meaning cc(S) = k.
Note that

∑
i |Ci| = n. Furthermore, we can choose at most |Ci| − 1 acyclic edges per

component Ci by choosing any spanning tree. Thus,

r(S) = maximum acyclic edges in (N,S)

=
∑
i

(maximum acyclic edges in Ci)

=
∑
i

|Ci| − 1 = n− k = n− cc(S).

Example 4.17. Consider following graph:
1 2

3 4

5

For the drawn S, it holds cc(S) = 2, namely {1, 2, 3, 4} and {5}, and thus r(S) =
5− 2 = 3.

We can construct the dual of (1):

min
yS

r(S)yS

s.t.
∑

S:e∈S

yS ≥ we, ∀e ∈ E,

y ≥ 0

(2)
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Warning. Our original LP had 2n constraints, which means our dual has 2n variables.
Even the data r(S) cannot be written down in polynomial time!

This means we need to think about r(S) a little bit more. Consider a set R and edge e ∈ E
with R ⊆ S ⊆ S + e. The so-called marginal cost of adding e to R is r(R+ e)− r(R) ∈
{0, 1}. Same goes for S.

Definition 4.18. For a set M , let r : P(M) → R+
0 be a function. If the marginal

costs are non-decreasing for R ⊆ S for the same edge, i.e.

r(S + e)− r(S) ≤ r(R+ e)− r(R),

then we call r submodular.

Theorem 4.19. Our acyclic-r(S) is submodular.

Proof. It suffices to show that r(S + e) − r(S) = 1 and r(R + e) − r(R) = 0 cannot
happen. Note that the connected components of R are subsets of connected components
of S. Thus, if we add an edge e that connects two connected components, it also connects
two components of R. By Theorem 4.16, this is the only way r(S) increases by one, but
also forces r(R) to increase.

There is also an equivalent definition of submodularity:

Theorem 4.20. A function r : P(M)→ R is submodular iff for all S,R ⊆ E

r(S) + r(R) ≥ r(S ∩R) + r(S ∪R).

Proof. See Exercise 5.2.

Now let’s try to derive Kruskal from our LPs (1) and (2):

Lemma 4.21. Suppose x∗, y∗ are optimal in their corresponding LPs (1) and (2).
Among the dual optimal solution let y∗ be the one with y∗ =

∑
S⊆E(yS)

2 (notice
the square!).

Then for R,S ⊆ E, if y∗R, y
∗
S > 0, it follows that either R ⊆ S or S ⊆ R. We call

this property nested.

Proof. Assume y∗R, y
∗
S > 0, but are not nested. Let ε = min(y∗R, y

∗
S0) > 0 and

y′Q =


y∗Q − ε, if Q = R ∨Q = S,

y∗Q + ε, if Q = R ∪ S ∨Q = R ∩ S,

y∗Q, otherwise.
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Then y′ is still feasible, because the ε cancel out, since R∪S and R∩S must be new sets,
and every edge is either in all four sets, no set, or exactly one of R,S and R ∪ S,R ∩ S
each. The choice of ε ensures y′ ≥ 0.

Now have a look how the objective function changes and consider the difference given by:

ε(r(R ∩ S) + r(R ∪ S)− r(R)− r(S)︸ ︷︷ ︸
≤0 by submodularity

)

We cannot get cheaper though, because we were already optimal. Therefore, y′ is also an
optimal dual solution, but ∑

S

(y′S)
2 <

∑
S

(y∗S)
2

is a contradiction! (One can check this by tedious calculations.)

Theorem 4.22. Optimal feasible basic solutions to (1) and (2) are integer, and thus
solve MST.

Proof. Consider I := {S ⊆ E | y∗S > 0}. Because of previous lemma we can build a chain
of elements of I:

S1 ⊆ ... ⊆ Sm, |Si| = i.

If length m is not possible, add some y∗S = 0 sets. Thus, using this S as a basis yields
following system:



S1 S2 S3 Sm

e1 1 1

e2 0

e3

em 0 0 1




y∗S1

y∗S2

y∗S3

y∗Sm

 =


we1

we2

we3

wem


Note the basis matrix has continuous ones property (and thus being totally unimodular
by Corollary 4.11), and is an upper triangular matrix, meaning the resulting equation
system is easy to solve. In fact, substituting yields

y∗Sm
= wem

y∗Sm−1
= wem−1 − wem

...
y∗S1

= we1 − we2
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So, for this y∗ to be feasible (i.e. non-negative), the edges need to be ordered by weight,
just like in Kruskal! Furthermore, for every edge ek ∈ E it holds

∑
S:ek∈S

y∗S =

m∑
i=k

y∗Si

=

m∑
i=k

wi − wi+1

= wek ,

concluding feasibilty according to (2).

On the other hand, we can simply derive a primal optimal basis:



e1 e2 e3 em
S1 1 0 0

S2

S3

0
Sm 1 1




x∗
e1

x∗
e2

x∗
e3

x∗
em

 =


r(S1)
r(S2)
r(S3)

r(Sm)


Analoguous, we get

x∗
ei = r(Si)− r(Si−1)

= r(Si−1 + ei)− r(Si) ∈ {0, 1}

which represents the edge addition step, and assures feasibilty of (1)!

It remains to be shown that our constructed solutions are indeed optimal. Using strong
duality, we see

m∑
i=1

wix
∗
ei =

m∑
i=1

wi(r(Si)− r(Si−1))

=

m∑
i=1

r(Si)(wi − wi+1)

=

m∑
i=1

r(Si)y
∗
Si

Conclusion 4.23. Using only a submodular function and LPs, we constructed an
algorithm that solves MST. In particular, no special facts about trees etc. were
used.

Lecture 9
Tu 17 May 2022
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Definition 4.24 (Greedy). Given a set I ⊆ P(E). We call following class of algo-
rithms greedy:
Algorithm 3: General greedy algorithm
sort w1 ≥ · · · ≥ wm

T ← ∅
for i = 1, ...,m do

if T ∪ ei ∈ I then
T ← T ∪ ei

end
end

Theorem 4.25. The LPs (1) and (2) can be solved greedily with any submodular
function r.

Proof. We show that it suffices to choose for i = 1, . . . ,m greedily xei as big as possible,
i.e.

xe1 := r(S1)

xe2 := r(S2)− r(S1)

...

It is clear that x ≥ 0. Thus, consider S ⊆ E in order to show x(S) ≤ r(S). Let
k := max{i | ei ∈ S}. Using induction over k with the trivial base case k = 0, we define
S′ := S \ ek. Observe, by choice of k, that S ∩ Sk−1 = S′ and S ∪ Sk−1 = Sk. Therefore,
by submodularity 4.20:

r(S) ≥ r(S′) + r(Sk)− r(Sk−1)

Induction on k yields x(S′) ≤ r(S′), and thus

x(S) = x(S′) + xek = x(S′) + r(Sk)− r(Sk−1)

≤ r(S′) + r(Sk)− r(Sk−1)

≤ r(S)

Note. Assuming non-degeneracy, then the vertices of the submodular polyhedron corre-
spond to permutations of E. In particular, there are m! vertices.

Now, let’s concentrate on submodular functions where r({ei}) ∈ {0, 1}. We can derive
this notion with matroids - a common generalisation of (combinatorial) graphs/matrices
that define "independence".
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Definition 4.26 (Matroid). Given a set I ⊆ P(E). If also

1. ∅ ∈ I,

2. S ∈ I, R ⊆ S ⇒ R ∈ I, and

3. R,S ∈ I, |R| < |S| ⇒ ∃e ∈ S \R : R+ e ∈ I,

then I is a matroid. If only properties (1) and (2) hold, we call it a independence
system. Property (3) is also called extensibility.

Definition 4.27 (Rank function). Given a matroid I. Define the rank function
r : P(E)→ Z as

r(S) = max
I∈I,I⊆S

|I|.

Theorem 4.28. For all matroids, the rank function is submodular.

Proof. It suffices to show for R ⊊ S ⊊ S + e that

r(S + e)− r(S)︸ ︷︷ ︸
0,1

≤ r(R+ e)− r(R)︸ ︷︷ ︸
0,1

.

The only bad case is r(S + e)− r(S) = 1 and r(R+ e)− r(R) = 0. Suppose

r(R) = |I1|, I1 ∈ I, I1 ⊆ R

r(S) = |I2|, I2 ∈ I, I2 ⊆ S

Set k = r(S)− r(R) ≥ 0. From R ⊊ S and extensibility follows that there is a K ⊆ S \R
with |K| = k such that

I2 = I1 ∪K

Also, from r(S + e) > r(S) it follows from extensibility, that there is f ∈ S + e such that
I2 + f ∈ I. We see that f = e, otherwise it follows from I2 + f ⊆ S that r(S) > |I2|,
which is a contradiction.

Summarizing, we see I2 + e ∈ I. From property (2) follows that I1 + e ∈ I. Also
I1 + e ⊆ R+ e, which implies r(R+ e) = r(R) + 1 = |I1|+ 1. This contradicts our initial
assumption!

Corollary 4.29. Greedy is optimal for any matroid.
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Theorem 4.30. If Greedy is optimal for all cost vectors w on an independence
system, then it is a matroid.

Let (E, I) be an independence system. Then extensibility states that additionally all
maximal independent subsets of S have the same size, and are thus maximum.

Example 4.31. Note the difference of maximal and maximum! Given following
graph:

1

2

3

4

Then the yellow edges form only a maximal matching, while the orange edges a
maximum (and maximal) matching.

Define

ρ(S) = min{|I| | I ⊆ S, I ∈ I, I maximal}.

Especially, for matroids ρ(S) = r(S).

We want to prove a stronger theorem, though:

Theorem 4.32. If we apply Greedy to an independence system (E, I), then it holds

q := min
S⊆E

ρ(S)

r(S)
≤ greedy obj. value

optimal obj. value
≤ 1

Additionally, the worst case is attainable.

Proof. Consider we1 ≥ ... ≥ wen and Si := {e1, ..., ei}. Let G ⊆ E be a greedy solution
and Gk := G ∩ Sk. Let O ⊆ E be an optimal solution and Ok := G ∩Ok.

Consider two cases:

• ei ∈ G: Then |Gi| = |Gi−1|+ 1

• ei ̸∈ G: Then |Gi| = |Gi−1|
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Therefore, the greedy objective value is∑
i

(|Gi| − |Gi−1|)wei =
∑
i

|Gi|(wei − wei+1
)

≥
∑
i

ρ(Si)(wei − wei+1
)

≥ q
∑
i

r(Si)(wei − wei+1)

≥ q
∑
i

|Oi|(wei − wei+1
)

= q
∑
i

(|Oi| − |Oi−1|)wei

= q · optimal obj. value

Suppose our q is attained at S,

q =
ρ(S)

r(S)
.

By definition there are I1, I2 ⊆ S with I1, I2 ⊆ I such that r(S) = |I2| and ρ(S) = |I1|.
Choose

we =

{
1, e ∈ S

0, e ̸∈ S
.

and consider following ordering:

I1 S \ I1 Sc

︸ ︷︷ ︸
w = 1

︸ ︷︷ ︸
w = 0

Greedy solution will be I1 because of maximality, but optimal solution is I2. Therefore
q = |I1|

|I2| as proposed.

Proof for Theorem 4.30. For matroids, q = 1. Otherwise, q < 1.

Corollary 4.33. Greedy is a 2-approximation for matching.

Example 4.34. Other matroids are given by:

1. Uniform: I = {S | |S| ≤ k}

2. Partition: E is partitioned into P1, ..., Pk. Then I ∈ I iff for all i, |I ∩Pi| ≤ 1.

(a) G = (N,A), Pi = δ+({i})
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(b) G = (S ∪ T,E), Pi = δ({i}), i ∈ S

Example 4.35. Independence systems, that are not matroids, are for example:

1. Bipartite matching

2. Branching: G = (N,A), B ⊆ A is a branching iff acyclic, i.e. for all i,
δ−({i}) ≤ 1.

Remark 4.36. Intersections of matroids seem interesting: Previous examples can
be generated via intersections of partition matroids, i.e. for a bipartite graph G =
(S ∪ T,E), the set of bipartite matchings M is given by

I1 := {I ⊆ E | ∀i ∈ S : |I ∩ δ+({i})| ≤ 1}
I2 := {I ⊆ E | ∀i ∈ T : |I ∩ δ+({i})| ≤ 1}
M = I1 ∩ I2.

We can visualize this by coloring every partition set and defining the matroids as
the subsets where we take at most one edge per color:

∩

By taking the intersection we prohibit to take multiple edges from the same node,
leaving us at bipartite matchings.

Lecture 10
Th 19 May 2022

We now want to combine submodular functions with the geometrical interpretation of
LPs.

Definition 4.37 (Polymatroid). Given a monotonically increasing submodular func-
tion r with r(∅) = 0. We call the polytope

{x ∈ RE
≥0 | ∀S ⊆ E : x(S) ≤ r(S)}

a polymatroid, and r a polymatroid rank function.

Consider following exemplary use of rank functions:

Theorem 4.38. Let r(S) be the max-flow value when we set the capacity for all
incident j ̸∈ S to 0, i.e. usj = 0. Then r is submodular.
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Proof. See homework . homework

Theorem 4.39. Greedy works for polymatroids.

Proof. Polymatroids just use special submodular functions.

In fact, Greedy still works for non-monotone submodular functions, for example:

Theorem 4.40. Consider max-flow/min-cut on network N = (s, t, E), and define
r(S) for all S ⊆ E as the capacity of s+ S. Then this r is submodular.

Proof. Considering S+ s, T + s, S ∩T + s, S ∪T + s, then every edge occurs on both sides
of the inequality, except the ones from S + s to T \ S, which immediately leads to

r(S) + r(T ) ≥ r(S ∩ T ) + r(S ∪ T ).

Notice though that r(∅) > 0 and r not monotone.

s t

S + s

T + s

Let’s compare Greedy vs. Monotonicity. If r is monotone, then xei = r(Si)−r(Si−1) ≥ 0.
But if we don’t care for x ≥ 0, then we can apply Greedy.

x free =⇒
∑

S:e∈S

yS = we

Notice that "=" was "≥", but our previous proof showed that we get equality anyway for
the dual constraint.

Conclusion 4.41. Greedy works for polymatroids, matroids, and general submod-
ular functions, even with negative values.
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Remark 4.42. Submodular LPs are not totally unimodular. Consider e.g. following
submatrix of a submodular LP:

det


e1 e2 e3

e1e2 1 1 0
e1e3 1 0 1
e2e3 0 1 1

 = −2

Still, we get only integer solutions, meaning submodular RHS’s are special

Definition 4.43. We call a polyhedron integral if P = PI , with PI being the
integer hull of P . Equivalently, all vertices of P are integral.

We first want to derive a tool to prove that P = PI .

Theorem 4.44. If for all c such that an optimum exist holds that

z := max{cTx | x ∈ P} ∈ Z,

then P is integral.

Proof. Let v be any vertex of P . We know there is an outer cone of possible vectors c
such that zc = cT v ∈ Z. For c long enough, we can add unit vectors and still stay in the
cone, i.e. for any index i also zci = (c+ ei)

T v ∈ Z. Therefore, (c+ ei)
T v − cT v = vi ∈ Z,

and in particular v ∈ Zn

In order to apply this result following definition is useful:

Definition 4.45. We call a system Ax ≤ b totally dual integral if for all c ∈ Zn

with an optimum to {cTx | x ∈ P} the corresponding y∗ is integral.

Corollary 4.46. If Ax ≤ b is totally dual integral, and b ∈ Zm, then P is integral.

Proof. Recall that our z is also the optimal objective value of the dual. We know for all c
with an optimum, that y∗ ∈ Zm for bT y∗ = z ∈ Z. By Theorem 4.44, all primary vertices
are integral.

Theorem 4.47. For submodular r, the polyhedron {x | x(S) ≤ r(S)} is totally dual
integral.
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Proof. Greedy says (note w is synonym to c):

y∗S =

{
wi − wi+1, if S = Si,

0, else
∈ Z2E

Conclusion 4.48. Note the difference:

"Totally unimodular" corresponds to integral polyhedra for all integer-RHS.

"Totally dual integral" corresponds to integral polyhedra for special RHS. Submod-
ular RHS are an example.

Consider again intersections of matroids, i.e. bipartite matchings as in Remark 4.36.

Theorem 4.49. For submodular r1, r2, given the primal LP

max
x

wTx

s.t. x(S) ≤ r1(S),

x(S) ≤ r2(S),

x ≥ 0

with its dual

min
y1, y2

rT1 y
1 + rT2 y

2

s.t.
∑

S:e∈S

y1S + y2S ≥ we,

y1, y2 ≥ 0.

Then the primal is totally dual integral.

Proof. Analoguous to the proof of Theorem 4.22 we can show there exist optimal (y1)∗, (y2)∗
whose tight sets are nested. Then, we can construct following basis:


S1,1 S1,k−1 S1,k S2,l S2,l−1 S2,1

e1 0 0 0 1 1 0 0
e2 0 0 1 1 1 1 0 0

em 1 1 1 1 1


Notice we obtained continuous-one property, and thus totally unimodularity. Therefore,
y∗ ∈ Zm as the solution to the induced linear system, resulting for the primal in totally
dual integrality by definition.
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We remind ourselves of the duality of complexity and integrality: It remains to develop
an efficient optimization algorithm. We restrict us to a cardinality (i.e. c = 1) matroid
intersection algorithm:

Theorem 4.50. For two matroids I1, I2, we can solve

max
I∈I1∩I2

|I|

efficiently.

Observation 4.51. A (naive) greedy approach to bipartite matchings doesn’t work:

The red edges form a maximum matching which isn’t maximal like the blue set of
edges.

Idea. In order to solve the issue of wrong greedy choices we want to imitate an augmenting
path algorithm on a bipartite graph defined by the current maximal solution I and Ic as
partition and some edges connecting I and Ic.

We want to use following definition to describe the edges of our matroid-intersection-
graph:

Definition 4.52 (Circuit). A circuit C is a minimal dependent subset in a matroid.

Note that we can visualize a matroid I as a graph such that every acyclic subset is element
of I. A circuit is therefore always a cycle.

Example 4.53. The matroid over E = {1, 2, 3, 4, 5},

I = {∅, {1}, {2}, {3}, {4}, {5},
{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5},
{1, 2, 4}, {1, 2, 5}, {1, 3, 4}, {1, 3, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5},
{1, 2, 4, 5}, {1, 3, 4, 5}},

can be visualized as
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1

2

3

4

5

The circuits are given as {1, 2, 3}, {2, 3, 4, 5} and {1, 2, 3, 4, 5}.

Lemma 4.54. If I ∈ I, but I + e ̸∈ I, then I + e has a unique circuit.

Proof. We prove by contradiction. Suppose I + e contains two distinct circuits C1, C2.
Suppose w.l.o.g. that |I| is minimal and I+e = C1∪C2. Then there must exist a ∈ C1\C2

and b ∈ C2 \ C1.

To construct our contradiction, it suffices to show now that

I ′ := (C1 ∪ C2) \ {a, b} ∈ I.

Suppose this doesn’t hold. Then there exist a circuit C ⊆ I ′. Then (I−a)+e contains C2

(since a ̸∈ C2) and C (since I ′ ⊆ (I−a)+ e). But |I−a| = |I|− 1 contradicts minimality
of I.

This lemma motivates following definition:

Definition 4.55. For every I ∈ I and e ∈ E we define

C(I, e) =

{
∅, if I + e ∈ I
unique circuit in I + e, else

as the fundamental circuit.

In particular, we want to consider fundamental circuits C1 of I1 and C2 of I2: Going
back to our initial idea, for any f ∈ I and e ∈ Ic, we now draw an edge iff f ∈ C1(I, e)
or f ∈ C2(I, e).

Lecture 11
Tu 24 May 2022

Further consider

S1 := {e ∈ Ic | I + e ∈ I1},
S2 := {e ∈ Ic | I + e ∈ I2}.
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Example 4.56. Consider a bipartite matching and its matroid-intersection graph
for some independent set I ⊆ I1 ∩ I2:

f
e

g

h
i

h

f

i

g

e

C2(I, e)

I ∈ I1 ∩ I2

S1

S2

I Ic

f ∈ C2(I, e)

f ∈ C1(I, g)

Assumption. From now on assume S1∩S2 = ∅. Otherwise, if there exists an e ∈ S1∩S2,
then we could choose I + e ∈ I1 ∩ I2 greedily.

Observation 4.57. Given I ∈ I1 ∩ I2. Using circuits, we can swap edges such that
we stay at least in I1: Suppose e ∈ S1 (and e ̸∈ S2). Therefore, C2(I, e) − e ̸= ∅,
meaning there is a f ∈ C2(I, e) − e which is also in I. In order to add e to I, we
must remove f . Consider I − f . We add g ∈ Ic such that f ∈ C1(I, g)− g, because
deleting f will remove the only possible circuit that can appear when adding g,
therefore keeping (I − f) + g ∈ I1.

We want to use previous observation along an augmenting path from S1 to S2 in order
to generate an I ′ that is also in I2.

Theorem 4.58. We prove two parts:

1. As long as there is an augmenting path from S1 to S2 (i.e. a path of edges in
a bipartite matching), we can augment our solution.

2. If there is no augmenting path, we are optimal.

In order to prove the first part, we need a little bit more work first.

Definition 4.59. Given a bipartite graph ({e0, . . . , ek} ∪ {f1, . . . , fl}, E). A path

P = ei0 → fi1 → ei1 → · · · → fis → eis

is shortcut-free if for every ij there is no larger index i′ > ij such that (eij , fi′) ∈ E
or (fij , ei′) ∈ E.
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Lemma 4.60. Given a shortcut-free path, for all i holds

C1(I + e0, ei) ⊆ I \ {f1, . . . fi−1}+ e0 + ei

Proof. Suppose the opposite. Then for some i there exists a j with 1 ≤ j < i such that
fj ∈ C1(I, ei), therefore (fj , ei) ∈ E. But fj → ei is a shortcut.

Definition 4.61. We define

Ii := I ∪ {e0, . . . , ei} \ {f1, . . . , fi}

as the partial augmentation.

Lemma 4.62. Given a shortcut-free full augmentation. For all i holds Ii ∈ I1.

Proof. We use induction over i. For i = 0 this follows by e0 ∈ S1. Assume now Ii−1 ∈ I1
and consider two cases:

• Ii−1 + ei ∈ I1: Then Ii = Ii−1 + ei − fi ∈ I1 by subset stability.

• Ii−1 + ei ̸∈ I1: Then C1(Ii−1, ei) ̸= ∅. Observe by Lemma 4.60 that

C1(I + e0, ei) ⊆ I \ {f1, . . . , fi−1}+ e0 + ei ⊆ Ii−1 + ei.

By uniqueness of circuits, C1(I + e0, ei) = C1(Ii−1, ei). As a result, fi → ei ∈ E iff
fi ∈ C1(Ii−1, ei), concluding C1(Ii−1, ei)− fi ∈ I1, and finally Ii ∈ I1.

Corollary 4.63. If we augment on a shortcut-free path P , then I ′ ∈ I1 ∩ I2.

Proof. For I ′ ∈ I1 this follows directly from Lemma 4.62. For I ′ ∈ I2 we can derive an
analoguous proof.

This concludes part 1 of Theorem 4.58.

For the second part, we want to prove optimality after termination of part 1. Note that
for I ∈ ∞∩ ∈, the matroid rank function ri and any S ⊆ E

|I∗| = |I∗ ∩ S|+ |I∗ ∩ Sc| ≤ r1(S) + r2(S
c),

thus, tightness induces optimality of I. We want to find such S for an maximal I:

Lemma 4.64. Suppose I∗ ∈ I1 ∩ I2 does not have any augmenting path. Let S be
the set of nodes reachable via partial augmentation. Then
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1. |I∗ ∩ Sc| = r2(S
c), and

2. |I∗ ∩ S| = r1(S).

Proof. Observe S1 ⊆ Sc and S2 ⊆ S by assumption of I∗. We prove both parts by
contradiction.

1. Suppose strict inequality. By extensibility, we can add e ∈ Sc \ I∗ to I∗ ∩ Sc such
that (I∗ ∩ Sc) + e ∈ I2.

Notice e ̸∈ S2, therefore C2(I
∗, e) ̸= ∅ by definition, meaning there is f ∈ C2(I

∗, e)−
e ⊆ I∗, but f ̸∈ I∗∩Sc. Otherwise, C2(I

∗, e) ⊆ (I∗∩Sc)+e, and by subset stability
C2(I

∗, e) ∈ I2, contradicting the circuit definition.

As a consequence, f ∈ I∗ ∩ S, meaning f is not reachable by definition of S, but a
path e→ f exists by definition of our matroid intersection graph - contradiction!

2. Suppose strict inequality. By extensibility, we can add e ∈ S \ I∗ to I∗ ∩ Sc such
that (I∗ ∩ S) + e ∈ I1. Analoguous, we can derive there is an f ∈ I∗ ∩ Sc with a
path f → e, meaning f is reachable, but e is not by definition - contradiction!

Corollary 4.65. If I∗ ∈ I1 ∩ I2 does not have an augmenting path, then it is
optimal.

Remark 4.66. We can extend the cardinality case to arbitrary weighted intersection
matroids. As a general idea, we can extend on the augmenting paths idea and
additionally use successive shortest paths or the Hungarian Algorithm for a weighted
bipartite matching. See [Coo+97, Ch. 8] for details.

Remark 4.67. We can use the same ideas for polymatroid and submodular inter-
section.

Unfortunately, matroid-intersection cannot be efficiently extended to arbitrary numbers
of matroids. Intuitively, this can be explained because we cannot construct a basis with
Continuous One Property by glueing the parts together as in the case with 2 matroids.
This prohibits us from using Totally Dual Integrality.

Theorem 4.68. Triple-matroid intersection is in NPC, therefore cannot be solved
efficiently.

Proof. We can reduce from HAMPATH. See the tutorial for the proof.

As a closing thought, we want to have a last look at Totally Dual Integrality:
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Theorem 4.69. If Ax ≤ b is rational, then there is q ∈ Z such that q−1Ax ≤ q−1b
is Totally Dual Integral.

Nonetheless, this fact is useless since q−1b would have to be integral to get integer optimal
solutions.

Theorem 4.70. Given a rational polyhedron. Iff it can be written as a Totally Dual
Integral system where b is integral, then the polyhedron is integral.

Proof idea. We can add redundant constraints to "help" the dual.

Conclusion 4.71. Totally Dual Integrality is a property of the linear system, not
the polyhedron.

Lecture 12
Th 02 June 2022

4.3 Combinatorial algorithms for IP

We already considered polynomial algorithms for bipartite matchings, but can we extend
this to general graphs?

Recall. We defined a (weighted) matching via IP as

max
x

wTx

s.t.
∑

e∈δ(v)

xe ≤ 1, ∀v ∈ V,

x ∈ BE

For the linear relaxation, we can find non-bipartite graphs with non-integral optimal
solutions.

Idea. To fix the issue of fractional vertices, we want to add cutting planes that cut only
these fractional vertices off. More general, we want to cut off odd cycles by introducing
constraints ∑

e∈E(S)

xe ≤
⌊
|S|
2

⌋

for every S ⊆ V with odd cardinality. We will call these blossom constraints.

Example 4.72. For following graph

e1 e2

e3
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is [0.5, 0.5, 0.5]T an optimal vertex for the LP relaxation, but introducing

xe1 + xe2 + xe3 ≤ 1

would cut this solution.

Definition 4.73. Given a graph G = (N,E) and matching M .

1. A path is alternating w.r.t. M if its edges alternate between M and E −M .

2. A node is exposed if no edge in M hits the node.

3. A path is augmenting if it is alternating and both endpoints are exposed.

Theorem 4.74. A matching M is not maximum iff there exist an augmenting path
w.r.t. M .

Proof. The reverse is clear. Thus, consider a non-maximum matching M . Then there is
a matching M ′ with |M ′| = |M | + 1. Let D = M∆M ′, then D is composed from paths
or even-sized cycles only, e.g.

We see that

|D| = |M |+ |M ′| − 2|M ∩M ′| = 2(|M | − |M ∩M ′|) + 1

is odd. This implies that there is an alternating path of odd length. Note |M ′ −M | >
|M −M ′|, so there is an M -augmenting path.

Using this theorem might enable us to create an algorithm!

Recall. The cardinality of a matching is at most the cardinality of a node cover. For the
special case of bipartite graphs, König’s theorem state that they are even equal.

Theorem 4.75 (Tutte-Berge). For G = (N,E),

max
matching M

|M | = min
X⊆V

1

2
(|V | − oc(X) + |X|)

where oc(X) is the number of odd components in G(V −X).
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Proof of ≤. Let X ⊆ V be such that G(V −X) has k odd components Hi. Let M be a
matching. For each Hi, either there exist a M -exposed node, or there exist an edge in M
from Hi to X.

The number of such edges is at most |X|, therefore there must be at least k−|X| exposed
nodes. Because these nodes are by definition not in the matching, there remain only at
most the right side of our equation many matched edges.

Proof of ≥. See tutorial or Corollary 4.85.

Definition 4.76 (Cycle-shrinking). For an odd cycle C in G, we define G′ := G×C
to be the graph that shrinks C to a single node, but maintains all external (possibly
multi-)edges.

Furthermore, if we have a matching in G′, we define its extended matching in G
to be the original edges, plus all possible edges from C.

Example 4.77. A possible shrinking operation can be:

C shrinking−→ C

Additionally, a matching M ′ in the shrinked graph and its corresponding extended
matching M in the original graph is shown.

Observation 4.78. The number of M ′-exposed nodes in G′ is retained by the ex-
tended matching M .

Warning. By this procedure, it is generally not true that M is maximum iff M ′ is
maximum. Therefore, we need to circumvent this issue in order to use this fact.

Theorem 4.79. Given G,M , and an odd cycle C such that

|M ∩ C| = |C| − 1

2
.
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Let c ∈ C be the one not covered within C. Suppose that for any M -exposed node
r, all alternating r − c-paths are disjoint from V (C)− c.

Then, M is maximum in G iff M ′ is maximum in G′.

Example 4.80. Following graphs illustrate when the conditions of the theorem hold
and do not hold for some matching M , with a bad r − c-path.

r

c

vs.

r

c

Proof. First, suppose M is maximum, but M ′ is not. Then |M ′| = |M | − k with

k := |M ∩ C| = |C| − 1

2
.

If there exists a matching N ′ in G′ with |N ′| > |M ′|, then there exists a matching N in
G with

|N | = |N ′|+ k > |M |

Contradiction!

For the other direction, suppose M ′ is maximum, but M is not. Then there exists an
augmenting path P in G. Let v be an endnode of P that is not in V (C), and consider
two cases:

• P ∩ C = ∅: Let w be the other endnode.

• P ∩C ̸= ∅: Then P ∩C consists only of the unmatched node c inside of C, otherwise
we could construct an alternating r − c-path starting from one of the end nodes of
P . Again, let w be the other endnode. ask why

script seems
wrongAs a consequence, the v − w-path is M ′-augmenting - contradiction!
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Algorithm 4: Alternating tree-algorithm
Graph G, matching M , exposed node r
A← ∅
B ← {r}
while for any w ∈ V, u ∈ B, v ̸∈ A ∪B: (u, v) ∈ E, (v, w) ∈M do

A← A+ v
B ← B + w

end

Definition 4.81. The tree we get by this algorithm is called M -alternating tree.

Example 4.82. An exemplary run of the algorithm with two roots r1, r2, a matching
M , and one odd cycle C could yield following alternating forest,

r1

r2

C

with A and B colored correspondingly. Non-tree edges are left dashed. The purple
edge could be used to connect the two roots. (Actually, going from r1, the node
colors for the part after this edge should be swapped. Same for r2 the other way
round)

Observation 4.83. Using this algorithm we see

• A (B) contains all nodes that are endnodes of an odd (even)-length M -alternating
path on T ,

• every node other than r is covered by an edge in M ∩ E(T ),

• every path from r to any v ∈ V (T ) in T is alternating,

• |B| = |A|+ 1

Additionally, we can conclude that any (u, v) ∈ E with u, v ∈ B forms an odd cycle
C - shrinking it to node c (and adding c to B) does not affect our structure.
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Finally, if M -alternating trees from two roots r1, r2 share an (u, v) ∈ E with u ∈
B1, v ∈ B2, then there exists an M -augmenting path from r1 to r2.

Now all preliminaries are set to construct the algorithm we long for. Lecture 13
Tu 07 June 2022

Algorithm 5: Blossom algorithm for maximum matching
Graph G = (V,E), matching M
Maintain M -alternating forests for all M -exposed nodes as roots. while any
following case can still occur do

if v ∈ V can extend tree then
extend this tree with corresponding edge (u, v)

end
if blossom exists then

shrink blossom and adjust M
end
if M -augmenting path exists between two roots then

augment M along this path
end

end
Deshrink blossoms and readjust M
return M

Theorem 4.84. If algorithm 5 stops, its output is a maximal matching.

Proof. Let M be the matching after termination and T1, . . . , Tk its M -alernating trees.
Let A1, . . . , Ak (B1, . . . , Bk) be the set of nodes with odd (even) distance from the corre-
sponding tree’s root. Consider A :=

⋃̇
Ai and B :=

⋃̇
Bi. Then all nodes in V \ (A ∪ B)

must be already matched. Therefore, all its components are of even size (and form a pere-
fect matching by itself). Since the algorithm stopped, there are no edges between nodes
in B (otherwise there is an augmenting path or blossom). So, B has |B| odd components.
Therefore oc(A) = |B|. Recall |Bi| = |Ai|+1, and being disjoint unions oc(A)− |A| = k.
The current matching has exactly its k roots as M -exposed nodes. By Theorem 4.75, the
cardinality of any matching is at most

min
X⊆V

1

2
(|V | − (oc(X)− |X|)) = 1

2
(|V | − max

X⊆V
(oc(X)− |X|))

≤ 1

2
(|N | − (oc(A)− |A|))

=
1

2
(|N | − k) = |M |

which proves maximality of |M | for the shrunk graph. By Theorem 4.79, the reextended
matching is also maximal in the original graph.
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Corollary 4.85. This proves the ≥-direction of Theorem 4.75.

Remark 4.86. The naive running time is given by O(n) augmenting steps which
extends O(n) trees and shrinks O(n) blossoms each. Since every blossom shrinking
needs O(n) our running time is O(n3).

However, using more efficient tree data structures can improve the running time to
O(mn log n). Furthermore, ensuring augmentations use only shortest augmenting
paths further reduces the time to O(

√
n ·m). See [Coo+97, Thm. 5.11].

Now let us try to generalize this method to weighted matchings.

Theorem 4.87. Following problems are equally hard to solve:

1. min-cost perfect matching (i.e. cTx), and

2. max-weight general matching (i.e. wTx).

Proof for 2. =⇒ 1. Set w0 := −c and let wmin be the smallest entry of w0. If wmin < 0,
set w1 := w0 − wmin · 1 to ensure w1 ≥ 0 (otherwise w1 := w0). Let wmax be n times the
largest entry of w1 and define w2 := w1 + wmax · 1.

We show: Finding a max-weight general matching on (w2)Tx is also a min-cost perfect
matching. Suppose there is an augmenting path P . Then the cost change by augmenting
is given by ∑

e∈P\M

w2
e −

∑
e∈P∩M

w2
e =

∑
e∈P\M

w1
e + wmax −

∑
e∈P∩M

w1
e + wmax

= wmax +
∑

e∈P\M

w1
e︸ ︷︷ ︸

≥0

−
∑

e∈P∩M

w1
e︸ ︷︷ ︸

<wmax

> 0.

As a consequence, we will always choose a perfect matching if one exists. By definition
and because the number of chosen edges is fixed, it must have minimal cost.

Proof for 1. =⇒ 2. Set c = −w. Define the graph G′ = (V ′, E′) as two merged copies
G1, G2 of the original G such that G′ also includes self-crossing-edges, i.e.

V ′ = V 1 ∪̇ V 2,

E′ = E1 ∪̇ E2 ∪̇ {(i1, i2) | i ∈ V }.

Then we can always choose a perfect matching by mirroring a possibly non-perfect match-
ing of G in G1 and G2, and fill unmatched nodes with these zero-cost crossing edges.
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Consider the LP relaxations of the two variants of weighted matchings

max
x

wTx

s.t. x(δ({i})) ≤ 1, ∀i ∈ V,

x(γ(S)) ≤ |S| − 1

2
, ∀S ⊆ V, |S| odd,

x ≥ 0

(3)

and
min
x

cTx

s.t. x(δ({i})) = 1, ∀i ∈ V,

x(δ(S)) ≥ 1, ∀S ⊆ V, |S| odd,
x ≥ 0.

(4)

We call the second set of constraints blossom constraints. These are supposed to make
1/2-integral solutions (and therefore weird things happening in the blossoms) infeasible.
Now also consider their duals

min
y, z

∑
i

yi +
∑
S

|S| − 1

2
zS

s.t. yi + yj +
∑

S:i,j∈S

zs ≥ wi,j , ∀(i, j) ∈ E,

y, z ≥ 0

(5)

and
max
x

∑
i

yi +
∑
S

zS

s.t. yi + yj +
∑

S:i∈S or j∈S

zS ≤ ci,j , ∀(i, j) ∈ E,

z ≥ 0,

y free.

(6)

Using these formulation we want to find to reuse the blossom shrinking idea to construct
the desired algorithm. Note that we can assign zs to blossoms and set yS := zS for the
pseudonode S after shrinking. Consider the reduced cost for an edge e = {i, j}:

(5) : yi + yj +
∑

S:i,j∈S

zS − wi,j ≥ 0

(6) : ci,j − yi − yj −
∑

S:i∈S or j∈S

zS − wi,j ≥ 0

Either this term or xi,j must be 0 by complementary slackness. So, e ∈M only if it has
reduced cost 0. Thus, forest groth is blocked by lack of such edges. The idea now is to
update the dual variables in the blossom algorithm, but the details are omitted.
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Theorem 4.88. The runtime of this algorithm is O(n3).

Corollary 4.89. Both primal formulations (3), (4) have integral vertices.

Theorem 4.90. It holds that (5) is totally dual integral, whereas (6) is not and has
1/2-integral solutions.

Lecture 14
Th 09 June 2022

We know how to efficiently find optimal general matchings, implying we can also efficiently
solve the separation problem with blossom contraints.

Theorem 4.91. There is an efficient non-Ellipsoid separation algorithm for blossom
constraints.

Proof. The algorithm can be found in [Coo+97, Ch. 6.8]. The rough idea is to use
submodularity.

We want to have a look at further matching-like problems.

Definition 4.92. Given an undirected graph G = (V,E). We want to find a min-
cost walk traversing every edge at least once and finishing where we started. This
problem is called Postal Delivery Problem, or archaically Chinese Postman
Problem.

Remark 4.93. In the optimal case, every edge needs only to be traversed once,
leading to the lower bound

∑
e∈E c(e). The decision problem if this is possible is

called Euler Tour, or historically Königsberg Bridge Problem.

Fact 4.94. Given graph G. An Euler Tour exists in G iff all nodes have even degree
and G is connected.

Definition 4.95. We call G Eulerian if G has an Euler Tour.

What remains to be analyzed for the Postal Delivery Problem is the case if G is not
Eulerian. For this, let T be the set of nodes with odd degree. We want to find a min-cost
subset J ⊆ E such that E ⊎ J is Eulerian, because this J can be interpreted as the edges
we need to traverse twice (one can show there are optimal solutions with this property).

But in fact, nothing restricts us to let T be any even subset of nodes:
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Definition 4.96. For a graph G = (V,E), consider even-sized T ⊆ V and J ⊆ E. If

T = {v ∈ V | degJ(v) is odd},

we call J a T -join. For an additional cost vector c, the corresponding optimization
problem of finding a minimal T -join is given by

min
J

c(J)

s.t. J is T -join

Remark 4.97. Applications of this are

1. our postal delivery problem using all odd nodes,

2. for T = {s, t}, an optimal T -join is an s− t-path with negative costs allowed,

3. for even |N | and T = N , a T -join is a min-cost general matching.

Example 4.98. Let’s construct a T -join, for T = {1, 3, 5, 9}:

1 2 3

4

5 6

7 8 9

3

5

6

3
1

−1

4
2

4

−2 −1

3
2

3
1

1 2

Then the orange edges J form a T -join, but while cheaper, this isn’t minimal like
the green edges J ′.

Theorem 4.99. If J is a minimal (w.r.t. to its choice of edges) T -join, then J is a
collection of |T |/2 edge-disjoint paths.

Proof. We prove by induction over even size |J |. Base case 0 is trivial. Consider t ∈ T
and let C be a connected component of (V, J) cont.t. Note δJ(t) is odd, and

∑
i∈C δJ(i)

is even, therefore there exists another s ∈ C with δJs odd. By removing {s, t} from T
and the s− t-path from J , we keep our T -join property, enabling us to use our induction
step.
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Theorem 4.100. Let s, t ∈ T connected by path P in a T -join J . Suppose there
exists a cheaper s− t-path P ′. Then, J is not an optimal T -join.

Proof. We show that

J ′ := (J − P )∆P ′

is a better T -join. Deleting P will result only in s, t changing parity. Adding P ′ then
again changes parity of s, t, either by adding or deleting exactly one edge. For the other
nodes in P ′, either 0, 1, or 2 edges are also in Q, but every case doesn’t change parity
again. So, we maintain T -join-property.

Calculating everything further yields

c(J ′) ≤ c(J) + c(P ′ \ P )− c(P \ P ′)

= c(J) + (c(P ′ \ P )− c(P ′ ∩ P ))− (c(P \ P ′)− c(P ′ ∩ P ))

= c(J) + c(P ′)− c(P )︸ ︷︷ ︸
<0

< c(J)

as wished.

Corollary 4.101. If c ≥ 0, then optimal J consists of |T |/2 shortests paths.

Consider now negative costs c.

Definition 4.102. Let M ⊆ E be the set of negative-valued edges, and define

TM := {i ∈ N | δM (i) is odd}.

Remark 4.103. M is a TM -join.

Lemma 4.104. If J is a T -join and J ′ is a T ′-join, then J∆J ′ is a (T∆T ′)-join.

Proof. Let v ∈ T∆T ′. Then w.l.o.g. v ∈ T and v ̸∈ T ′, so degJ(v) is odd, while degJ′(v)
is even. Because only edges that are both in J and J ′ cancel each other out in J∆J ′, it
holds degJ∆J′(v) ≡ degJ(v) + degJ′(v) ≡ 1 (mod 2).

Otherwise, v ̸∈ T∆T ′, so v is either in both or none of J, J ′. An analoguous argument
shows degJ∆J′(v) ≡ degJ(v) + degJ′(v) ≡ 0 (mod 2).
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Theorem 4.105. J is an optimal T -join w.r.t. cost vector c iff J∆M is an optimal
(T∆TM )-join w.r.t. cost vector |c|.

Proof. By Lemma 4.104 and Remark 4.103 we can form the symmetric difference of any
side and get the other side as a corresponding join (note A∆B∆B = A). It remains to
prove optimality. Calculations show:

c(J) = c(J \M) + c(J ∩M) + c(M \ J)− c(M \ J)︸ ︷︷ ︸
=0

= c(J \M)︸ ︷︷ ︸
only positive

+c(M)− c(M \ J)︸ ︷︷ ︸
only negative

= |c|(J∆M) + c(M)

So, minimizing one side also minimizes the other side, which immediately proves our
equivalence (note c(M) is constant).

Corollary 4.106. Calculating an optimal T -join is in P.

Example 4.107. Building upon previous example, again consider T = {1, 3, 5, 9},
but note now TM = {2, 5, 6, 7} and T∆TM = {1, 2, 3, 6, 7, 9}.

1 2 3

4

5 6

7 8 9

−1
−2 −1

3

5

6

3
1

4
2

4

3
2

3
1

1 2

Note that the red edges form an optimal T∆TM -join. Taking its symmetric difference
with M directly yields our initial (optimal) T -join.

We still need an LP-formulation, though. We will utilize following definition for this:

Definition 4.108. If S ⊆ E such that |S ∩ T | is odd (even), we call S T -odd
(T -even).
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Theorem 4.109. If c ≥ 0, then solving

min
x

cTx

s.t. x(δ(S)) ≥ 1, ∀ T -odd S ⊆ E,

x ≥ 0

yields an optimal T -join.

Proof. See [Coo+97, Thm. 5.28].

However, there are two problems:

1. It is only 1
2 -integral and not totally dual integral.

2. If c arbitrary, then it could be unbounded.

We can circumvent these problems with a tighter LP. Consider following motivation: Let
S ⊆ N and F ⊆ δ(S). If S is T -odd and |F | even, then |δ(S)\F | is odd. This means, if J
is a T -join and uses all edges in F , then it must also use at least one edge from δ(S) \F .
Analoguous, if S is T -even, we conclude |F |, and get to the same result. We encode this
property as follows: why is δ(S)

always odd?
Theorem 4.110. For any c, the LP

min
x

cTx

s.t. x(δ(S) \ F ) ≥ 1 + x(F )− |F |, ∀S, F, |S ∩ T |+ |F | odd,
1 ≥ x ≥ 0

is Totally Dual Integral and yields an integral optimal T -join.

Proof. Note the right side is equal to 1 iff all edges of F are used. For the actual proof,
see [Coo+97, Thm. 5.30]. Lecture 15

Tu 14 June 2022

content
lec15

Definition 4.111. We can generalize matchings as follows:

• Replacing x(δ(i)) ≤ 1 by x(δ(i)) ≤ b yields b-matchings.

• Additionally introducing upper bounds xe ≤ ue is called (b, u)-matching.

Example 4.112. A 2-matching is given by
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Notice how perfect (2, 1)-matchings are close to TSP. Suppose S ⊆ V, F ⊆ δ(S) such that
b(S) + u(F ) is odd. Further, suppose b(S) is even. Then on one hand, u(F ) is odd, on
the other hand x(δ(S)) is even. Then x(F ) ̸= x(δ(S)). Thus

x(δ(S) \ F ) ≥ 1 + x(F )− u(F )

Analoguous, the same follows for b(S) odd.

A perfect (b, u)-matching is given by the LP:

min
x

cTx

s.t. x(δ(i)) = bi, ∀i,
0 ≤ x ≤ u,

x(δ(S)− F ) ≥ 1 + x(F )− u(F ), ∀S, F s.t. b(S) + u(F ) odd

There is also an equivalent form: If b is even, then b(H) is also even. handle teeth
stuff

x(E(H)) + x(T ) ≤ |H|+
⌊
|T |
2

⌋

Note. For 2-matching, we have exponentially many constraints. These can be separated
in polynomial time. This, however, does not mean we can optimize TSP in polynomial
time with Ellipsoid, since there could be non-integer optimal solutions (or: we need more
constraints, and these make TSP NP-complete).

Example 4.113. Consider following part of a 2-matching, where same colors have
same edge values in the solution:

0.5
1

This violates our handle-teeth constraint for TSP.

4.4 Fixed dimension IPs
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Theorem 4.114. For a fixed number of variables, or a fixed number of constraints,
there exists a polynomial algorithm that solves IP.

Proof. The proof requires lattice theory. See [NW99, Ch. 2-6.5, Thm. 5.4+5] for details.

4.5 Approximation algorithms
Recall. Greedy on independent systems, which are not matroids, are suboptimal, but
can be used for approximated solutions, see Theorem 4.32.

Definition 4.115. For a maximisation problem and (polynomial) algorithm A, if

max
z∗

worst-case result of A
≤ α

we call A an α-approximation algorithm.

Example 4.116. Matching can be solved by Greedy as a 2-approximation.

Definition 4.117. There exist several classes of approximation algorithms:

• FPTAS (Fully Polynomial Time Approximation Scheme): There exists
an algorithm polynomial in |I| and 1/ε to get an (1 + ε)-approximation.

• PTAS (Polynomial Time Approximation Scheme): There exists an al-
gorithm polynomial in |I| and potentially exponential in 1/ε to get an (1+ ε)-
approximation.

• Fixed Factor: There exists a threshold β such that there is a polynomial
algorithm for all α ≥ β, but it is NP-hard to approximate for 1 ≤ α < β.

• Inapproximate NP-hard to approximate for any α > 1.
what does
this mean?
Inapproxi-
mate

4.6 Rounding non-integer solutions
Idea. Solve LP, get xLP, and round up or down to get a solution xIP.

This is a bad idea in general:

Theorem 4.118. Naive rounding of xLP can introduce arbitrarily large errors (see
[KV18, Thm. 5.7] for a more exact version).

Proof. We can construct following bad instance depending on some parameter α, such
that the gap between the rounded optimal LP solution and the actual optimal IP solution
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scales with α. lattice plot

Remark 4.119. Not all instances can be rounded out-of-the-box to a feasible solu-
tion.

sharp trian-
gle plot non-
roundable4.7 Cutting Planes

Recall our initial idea was to compute the integer hull P I of P , which is however NP -
hard. But, instead of computing all of P I , in most cases it suffices to calculate P I "near"
xI . Thus, we want to find a cutting plane αTx > β such that

1. xLP violates the plane, i.e. αTxLP > β, and

2. all of P I satisfies the cutting plane, i.e. for all x ∈ P ∩ Zn should hold αTxLP ≤ β

Idea. Find Cutting Planes, add to LP (reoptimize via dual simplex), and repeat until we
get xIP.

Finding cutting planes can be done via SEP.

Remark 4.120. There is a technical issue with convergence. While we know, in
general we cannot guarantee polynomial running time, it is also possible that P I

isn’t even a polyhedron:

Because of
√
2 being irrational, there will be infinitely feasible integer points getting

infinitely close, but never touching it. This cannot be handled with finitely many
constraints.

plot irra-
tional con-
straintTheorem 4.121 (Fundamental theorem of IP). For rational A, b and P = {x | Ax ≤

b} holds that P I is a polyhedron.

Proof. See [KV18, Thm. 5.1] Lecture 16
Th 16 June 2022

content
lec16

Question 4.122. How do we find Cutting planes?

Consider the Simplex Tableau, and some xLP ̸∈ Zn, e.g. xLP
1 ̸∈ Z. Then, xLP

1 > 0, and it
must be in the basis. Row 1 of the tableau therefore looks like:

x1 + aT1,NxN = b1

=⇒ x1 +
⌊
aT1,N

⌋
xN ≤ b1

If x ∈ P I , then the left-hand side is integral, so

x1 +
⌊
aT1,N

⌋
xN ≤

⌊
b1
⌋
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and for their difference

f(aT1,N )xN ≥ f(b1)

such that f maps to the fractional part of its input. This is clearly feasible for all integral
vertices in P , and thus also for P I . But xLP violates it, since the left-hand side is equal to
0, while the right-hand side must be positive - we found our cutting plane! This particular
type is called Gomory cut.

Fact 4.123. Repeatedly finding Gomory cuts leads in a finite number of iterations
to an optimal integral solution.

By 1963 though, Gomory cuts were abandoned, because there were issues that could not
be resolved:

Remark 4.124. Even though they can be easily generated by an optimal simplex
tableau, in practice Gomory cuts appear to be slow. Additionally, this procedure
can be numerically unstable because of rounding errors.

Maybe we need to think larger - let’s try to generalize Gomory Cuts: Starting with make more
cleanAx ≤ b, we introduce row multipliers y ∈ Rm such that

yTAx ≤ yT b

y ≥ 0

yTA ∈ Zn

yb fractional

Then

yTAx ≤
⌊
yT b

⌋
is a cutting plane, called a Chvátal Cut, or more general Chvátal-Gomory Cut.

Fact 4.125. The multiplier y is a succinct certificate that this is a valid cutting
plane for P I . This is also called a Chvátal proof.

Example 4.126. We try to derive a possible Chvátal proof for general matchings.
Recall the base-LP

max
x

wTx

s.t. x(δ(i)) ≤ 1, ∀i ∈ V,

x ≥ 0
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which produces non-integral solutions in general, e.g. Example 4.72. Therefore, we
needed to introduce the blossom constraints for all odd S ⊆ E as cutting planes:

x(E(S)) ≤
⌊
|S|
2

⌋
For Chvátal, we now sum the first constraint over all i ∈ S,

2x(E(S)) + x(δ(S)) ≤ |S|,

and sum the second constraint multplied by − 1
2 for all e ∈ δ(S)

−x(δ(S)) ≤ 0,

In total and divided by 2, we get

x(E(S)) ≤ |S|
2
.

Because all properties hold, we can round down and get our Chvátal plane. While
in this case these CPs are already enough to cut down to P I , in general it usually is
more complicated.

Let’s find some properties about Chvátal-Gomory cuts.

Theorem 4.127. Define P ′ as P with all possible Chvátal-Gomory cuts added.
Then P ′ is a polyhedron.

tikz graphic

Proof. As a general idea, we will show that every Chvátal cut is equivalent to a Chvátal
cut generated from a finite set S. Then, it follows directly that P ′ is still a polyhedron.

For S, we define

S := {x | ∃0 ≤ y < 1 : x = yTA ∧ yTA ∈ Zn}

which is obviously finite.

Suppose there is a “big” y that defines any Chvátal cut via

(yTA)x ≤ ⌊yb⌋ .

We define

ỹ := f(y).

Note 0 ≤ ỹ < 1. Calculations show:

ỹTA = yTA︸︷︷︸
integral

− ⌊y⌋A︸ ︷︷ ︸
integral
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which implies ỹ ∈ S. Also,

ỹT b = yT b− ⌊y⌋ b︸︷︷︸
integral

So, ỹT b and yT b have the same fractional part, or

⌊ỹb⌋ = ⌊y⌋ b = ⌊yb⌋

finish proof

See also [Coo+97, Thm. 6.34].

Theorem 4.128. There is an k ∈ N such that repeatedly calculating Chvátal closure
Pi+1 from Pi (that is, Pi+1 := P ′

i ) will lead to P I = Pk. We call this k the Chvátal
rank of P1.

Lecture 17
Th 23 June 2022

content
lec17

write lec17
Lecture 18
Tu 28 June 2022

content
lec18

Conclusion 4.129. The Chvátal rank is always finite.

Remark 4.130. Nonetheless, the Chvátal rank can be arbitrarily large. Consider:

(0, 0) (1, 0)

( 12 , k)

Here, the Chvátal rank is 2k.

We can also give similar qualitative measures for cuts:

Definition 4.131. If the cutting plane αTx ≤ β is valid for P k, but not P k−1, then
this cutting plane has Chvátal rank k.

Furthermore, we say the cutting plane is facet-inducing for P I if the CP contains
a facet of P I .

It is simpler when P I is full-dimensional, i.e. dim(P I) = n.
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It remains to show how we can solve MIPs. Recall the fundamental theorem of MIP
Theorem 4.121. Consider following simple-looking MIP for some fractional b:

x+ y ≥ b

x ∈ R≥0

y ∈ Z≥0

How can we cut off non-integer points without violating the continuity of x? Define a line

l = {(x, y) | x+ f(b)y ≥ f(b) ⌈b⌉}

We see this yields our integer hull. What about the general case, that is, x ∈ Rn
≥0, y ∈

Zp
≥0? ∑

j

ajxj +
∑
k

dkyk ≥ b

⇔


∑

j:aj≤0

ajxj︸ ︷︷ ︸
≤0

+
∑

j:aj>0

ajxj

+

∑
k

⌊dk⌋ yk +
∑

k:f(dk)<f(b)

f(dk)yk +
∑

k:f(dk)≥f(b)

f(dk)yk

 ≥ b

⇔
∑

j:aj>0

ajxj +
∑

k:f(dk)<f(b)

f(dk)yk︸ ︷︷ ︸
∈R≥0

+
∑
k

⌊dk⌋ yk +
∑

k:f(dk)≥f(b)

yk︸ ︷︷ ︸
∈Z≥0

≥ b

⇔
∑

j:aj>0

ajxj +
∑

k:f(dk)<f(b)

f(dk)yk + f(b)
∑
k

⌊dk⌋ yk +
∑

k:f(dk)≥f(b)

yk ≥ f(b) ⌈b⌉

We call this Gomory Mixed Integer Cuts, shorthand GMI, and Mixed Integer
Rounding, shorthand MIR. Consider∑

j

a+j xj +
∑
k

min(f(dk), f(b))yk + f(b)
∑
k

⌊dk⌋ yk ≥ f(b) ⌈b⌉ .

We introduce a technique to find GMI cuts. Consider row multipliers λ ≥ 0 on

λ :Ax+Dy ≥ b

2 and slack variables

Ax+Dy − Is = b

so that we get

(λTA)x+ (λTD)y − λT s = λT b
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with λ now being free. Applying GMI yields∑
j

(λTA)+j xj + f(λT b)
∑
k

⌊
(λTD)k

⌋
yk+

+
∑
k

min(f(λTDk), f(λ
T b))yk +

∑
λi<0

|λi|si ≥ f(λT b)
⌈
λT b

⌉
Now, substitute s := Ax+Dy − b. example...

Conclusion 4.132. GMI cuts can be stronger than Chvátal-Gomory cuts.

Consider a disjunction y ≤ β ∨ y ≥ β + 1. We can find a Split Cut as a generalization
of CG and GMI cuts. examples...

Theorem 4.133. Define the polyhedron generated by adding all GMI (split) cuts as
PGMI (P split). Then P split = PGMI ⊆ P 1 = PCG.

Lecture 19
Th 30 June 2022

Definition 4.134. In the following we use Template cuts as a general term for
“useful” families of cuts, i.e. they have a specific name.

For TSP we consider 2-matching CPs. We know there is a polynomial algorithm for SEP
of 2-matching CPs. For subtour elimination cuts there also exists a polynomial SEP- ref script
algorithm via MaxFlow/MinCut.

h1

h2

h3

d11

d12

d21

d22

d31

d32

Lemma 4.135. This x satisfies all degree, subtour, and 2-matching constraints.

Proof. Brute Force. define comb
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Theorem 4.136 (Chvátal). Let T1, . . . , Tk be mutually disjoint for odd k such that
Tj ∩H ̸= ∅ and Tj ∩H \ ∅ for all j. Then

x(E(H)) +
∑
j

x(E(Tj)) ≤ |H|+
∑
j

(|Tj | − 1)−
⌈
k

2

⌉
is valid for the TSP integer hull.

Proof. Using degree and subtour constraints for a CG-proof. See homework insert ref

Remark 4.137. It is not known if SEP for combs is P or NPC. Nonetheless, for
special cases polynomial SEP-algorithms are known. One can also use Gomory-Hu-
Trees for a heuristic comb-SEP.

While TSP-cuts are specifically good for TSP, in general they might not be good at all.
Therefore, we need to find general templates for MIP/IP that most of the times work
satisfactory.

Lots of IPs have 0− 1-decision variables.

Suppose x ∈ Bn and a constraint aTx ≤ b. If aj < 0, replace

1. xj by 1− xj ,

2. aj by −aj > 0, and

3. b by b− aj > 0.

So, assume w.l.o.g. aj ≥ 0 and aj ≤ b. We define N = {1, . . . , n}. Consider C ⊆ N such
that a(C) > b. Then, if xj = 1 for all j ∈ C, the solution is infeasible.

Theorem 4.138. As a consequence, x(C) ≤ |C| − 1 is valid for the integer hull.

Proof. Via Chvátal derivation, see . homework

Definition 4.139. Such things we call a Knapsack cover. Furthermore, a cover
C is minimal if for all j ∈ C it holds that C − j is not a cover.

Can we separate x0 from Knapsack covers, that is decide if

x0(C) ≤ |C| − 1

for all minimal covers C? Note

(1− x0)(C) =
∑
j∈C

(1− x0
j ) = |C| − x0(C),
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therefore

x0(C) ≤ |C| − 1

⇔ (1− x0)(C) = |C| − x0(C) ≥ |C| − (|C| − 1) = 1,

so deciding

1 ≥ min
cover C

(1− x0)(C)

suffices if x0 satisfies all Knapsack covers. Unfortunately, this is NP-hard, but in practice
we can use Dynamic Programming, see . homework

Observation 4.140. It seems to be ideal to find CPs that are facet-inducing on
P I , i.e. the intersection with P I is a facet of it. Knowing dim(P I) is therefore
necessary.

TSP itself is not full-dimensional because of its degree equality-constraints.

Theorem 4.141. The integer hull for knapsack cover is full-dimensional (if aj ≤ b).

Proof. Note 0 ∈ P I . Furthermore, for all j it holds that aj ≤ b implies the unit vector
ej ∈ P I . So we have n+ 1 affinely independent points, immediately leading to P I being
full-dimensional.

Now, consider P I is full-dimensional. There exists several methods of proving if a CP
αTx ≤ β is facet-inducing:

1. Find x̄ such that αT x̄ > β, but x̄ satisfies all constraint of P I . However, we don’t
know all constraints of P I .

2. Find feasible, affinely independent v1, . . . , vn ∈ P I such that for all i it holds αT vi =
β

3. If cTx ≤ d is some other valid constraint for P I with

P I ∩ {αTx ≤ β} = P I ∩ {cTx ≤ d},

then (c, d) is a scalar multiple of (α, β). Lecture 20
Tu 05 July 2022

contents
lec20

Definition 4.142. Consider a binary constraint aTx ≤ b and some corresponding
minimal Knapsack cover C. We define

E(C) := C ∩ {j ∈ N | aj ≥ max
k∈C

ak}

as the extended cover.
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Observation 4.143. For P I and a extended cover E(C) it always holds that∑
j∈E(C)

aj ≤ |C| − 1

is also a valid cutting plane. Moreover, the extended cover is sometimes a facet, see
[NW99, Ch. II.2, Prop. 23] for a detailed breakdown.

Example 4.144. Consider for x ∈ B

7x1 + 8x2 + 9x3 + 8x4 + 22x5 ≤ 30.

We see C = {1, 2, 3, 4} is a minimal cover, therefore we can derive the cutting plane

x1 + x2 + x3 + x4 ≤ 3

and its extended cover E(C) = {1, 2, 3, 4, 5} with the constraint

x1 + x2 + x3 + x4 + αx5 ≤ 3.

How big can α be such that the constraint can still be valid? For this, assume x5 = 1
and look at the remaining RHS of 8. Here, a maximum of 1 variable of C can be
chosen, so by rearranging

α ≤ 3− (x1 + x2 + x3 + x4) = 3− 1 = 2

and we get a lifted cover constraint of

x1 + x2 + x3 + x4 + 2x5 ≤ 3

which is a facet.

Definition 4.145. Consider constraints of the form∑
j

yj ≤ b

yj ≤ ajxj

y ≥ 0

x ∈ Bn.

We call these constraints with variable upper bounds. For these, we define a flow
cover as follows: Let C be any cover. We define λ = a(C) − b > 0 as the excess
cap of C.

what exactly
flow cover?
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For each ahahhhhhhhhh

4.8 Branch and Bound
Consider again TSP with binary variables for every edge. Note that there are quadratically
many variables - for the IP solver this is way too much! But we might consider heuristic
ideas that use only “good” edges. For example, we can consider only short edges under
some threshold. Lecture 21

Th 07 July 2022

content
lec21

Note. I missed the remaining three lectures and will try to incorporate the missing
material in a future point in time when I’m less stressed out.

Lecture 22
Tu 12 July 2022

content
lec22

Lecture 23
Th 14 July 2022

content
lec23

...

restructure
table of con-
tents

clean up vo-
cabulary
index
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1. exercise sheet

Exercise 1.1. Did on paper.
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2. exercise sheet

Exercise 2.1. An correct ordering is given by:

O(εn) ⊆ O
(
nε−1

)
⊆ O

(
n−ε

)
⊆ O

(
log n

nε

)
(7)

⊆ O

(
1

log n

)
⊆ O

(
log2 n

log n

)
⊆ O

(
1

log2 n

)
(8)

⊆ O
(
e

1
n

)
= O(1) = O

((
1− 1

n

)n)
(9)

⊆ O(log n) ⊆ O

(
nε

log n

)
⊆ O(nε) ⊆ O(nε log n) ⊆ O

(
n1−ε

)
(10)

⊆ O

(
n

log n

)
⊆ O(n log n) ⊆ O

(
n2

)
⊆ O

(
n2 log n

)
⊆ O(ne) (11)

⊆ O
(
nlogn

)
⊆ O(en) ⊆ O((log n)n) ⊆ O(n!) (12)

These can mostly achieved by the fact that nx ∈ O(ny) if x ≤ y, and (log n) ·
nx ∈ O(ny) if y > x, otherwise the other way around. Additionally, it is often
useful to consider the logarithm of the functions we compare, because it maintains
monotonocity.

Exercise 2.2. Analoguous to the lecture we can introduce constraints, such that
yij = xi ∧ xj :

yij ≤ xi

yij ≤ xj

yij ≥ xi + xj − 1

yij ∈ [0, 1]

Exercise 2.3. We can show that f(x1) = max(c1x1, c1p+ c2x1 − c2p) using a case
distinction.

• x1 = p: Trivial.

• x1 > p: Consider c1 < c2. Multiplying by x1 − p (which is positive) and
rearranging yields c1x1 < c1p+ c2x1 − c2p.

• x1 < p: Analoguous, but now x1− p is negative, which reverses the inequality.

As shown in ADM1, the maximum of linear functions can be written as an LP by
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introducing a helper variable as follows:

min z +

n∑
i=2

cixi

s.t. Ax = b

l ≤ x1 ≤ u

x2, ..., xn ≤ 0

z ≥ c1x1

z ≥ c1p+ c2x1 − c2p
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3. exercise sheet

Exercise 3.1. 1. We can show easily that SPATH ∈ P by using the fact from
ADM1, that breadth-first search started from s finds a shortest path to t in
polynomial time. Therefore, if the shortest path has length k∗ ≤ k, we can
return true, and false otherwise.

2. We first show LPATH ∈ NP: Suppose an instance of LPATH is true, then
there is a path of at least length k. Therefore, we can simply use this path
as a succinct certificate and verify in polynomial time that the path is indeed
valid.

It remains to show that we can reduce a NP-complete problem to LPATH.
It suffices to show UHAMPATH ∝ LPATH: Suppose we have an instance
((V,E), s, t) of UHAMPATH. We can simply reduce it to the problem of find-
ing a path of at least length |V | − 1 starting in s and ending in t, because
every such path is indeed a hamiltonian path, because every vertex needs to
be visited exactly once. Therefore, if there is a hamiltonian path, it is already
a path of at least length |V | − 1. For the other direction, if there is a path of
at least length |V | − 1, then it must visit every node exactly once in order to
be a valid path.
This shows that the reduction is Yes-preserving.

Exercise 3.2. If DOUBLESAT is true, then we can choose any two valid assignments
as a succinct certificate and easily verify their correctness in polynomial time.

It remains to show SAT ∝ DOUBLESAT: Starting from our SAT-instance, we can
simply introduce two new variables a, b and a new clause a ∨ b. This construction
is Yes-preserving, because if the original instance is infeasible, the new instance still
has no assignments. On the other hand, if there is a valid assignment in the original,
then we now have at least 3 valid instances for different assignments of a and b.

Exercise 3.3. We notice that a ∨ b is equivalent to ¬a =⇒ b, and ¬b =⇒ a. By
doing this for all clauses, we can construct a graph with the literals as vertices, and
the implications as directed edges. Now, checking for each literal pair l,¬l if both
can reach one another by a directed path suffices to show feasibility:

If previous condition holds true, then by logic it must hold that a feasible assignment
satisfies l ⇔ ¬l, which is impossible. On the other hand, if this is never the case,
then there must be a feasible solution:

We can construct this solution by iteratively setting either l or ¬l to true, depending
if l =⇒ ¬l holds, and then also set every implied variable to true. If we would
encounter a variable r which is already false, then ¬r must be true, and therefore
all further implications would need to be true by construction. Because l =⇒ r,
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also ¬r =⇒ ¬l, meaning that l would be already false - contradiction!
Therefore, our construction always works.
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Exercise 4.1. We’re given an instance (v1, ..., vk, x0) as described. Iff x0 ∈ P , then
x0 ∈ conv(v1, . . . , vk). Thus there exist λ1, . . . , λk such that

k∑
i=1

λiv
i = x0

k∑
i=1

λi = 1,

λ ≥ 0

which we can find by LP. Otherwise, the system is found infeasible, and we know
there must exist c with cTx ≥ cTx0. We first show it suffices that this property
holds for all vertices.

Suppose cT vi ≥ cTx0. Let x =
∑

i λ
′
iv

i ∈ P . Then

cTx =
∑
i

λ′
ic

T vi

≥
∑
i

λ′
ic

Tx0

= cTx0.

Note that we used λ′ ≥ 0 and
∑

i λ
′
i = 1 in the second and third step.

Using

cT vi ≥ ctx0 ⇔ (vi − x0)T · c ≥ 0,

this means we can find c with following constraints via LP:

(vi − x0)T · c ≥ 0, i = 1, ..., k.

Exercise 4.2. We solve:

1.

2.

3.

Exercise 4.3. The Kilter diagram of the primal is given by
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b1 b2 b3 b4

m1

m2

m3

m4

xj

(y
T
A
) j
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Exercise 5.1. TBD

Exercise 5.2. Let r be submodular as defined, and let A,B ⊆ E be sets. We prove
by induction over n := |B −A| ∈ N that

r(A) + r(B) ≥ r(A ∪B) + r(A ∩B). (13)

Suppose n = 0. Then A ∪B = A and A ∩B = B, implying equality of (13).

Now, consider (13) to be true for sets A,B ⊆ E such that |B − A| = n. Suppose
A,B ⊆ E with |B−A| = n+1 > 0, and let e ∈ B−A. Notice that A∩B ⊆ A ⊆ E
with e ̸∈ A. Therefore, by applying rearranged submodularity, we get

r((A+ e) ∩B)− r(A+ e) ≥ r(A ∩B)− r(A). (14)

Additionally, |B − (A + e)| = n by choice of e, enabling us to use the (rearranged)
induction step (13):

r(B) ≥ r((A+ e) ∪B) + r((A+ e) ∩B)− r(A+ e)

Knowing (A+ e) ∪B = A ∪B, and applying (13) yields

r(B) ≥ r(A ∪B) + r(A ∩B)− r(A),

which was to be shown.

Exercise 5.3. TBD
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Exercise 6.1. TBD

Exercise 6.2. We show that r is a polymatroid rank function. We already know
r(∅) = 0. It is also easy to prove that r monotonically increasing for R ⊆ S, because
every flow in R is also feasible in S. It remains to show submodularity.
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Exercise 7.1. For even-sized subsets B ⊆ V we introduce∑
e∈E(B)

xe ≤
|B|
2

.

We can merge this without problems with the odd blossom constraints, and get

max
x

1Tx

s.t.
∑

e∈δ(v)

xe ≤ 1, ∀v ∈ V,

∑
e∈E(B)

xe ≤
⌊
|B|
2

⌋
, ∀B ⊆ V, |B| ≥ 2,

x ≥ 0

and construct the dual

min
y, z

1T y +
∑
B⊆V,
|B|≥2

⌊
|B|
2

⌋
zB

s.t. yi + yj +
∑

B:e∈E(B)

zB ≥ 1, ∀(i, j) ∈ E,

y, z ≥ 0

Now, given an optimal matching M (with corresponding solution x) and its Tutte-
Berge subset X ⊆ V , we construct the optimal dual solution by setting for every
i ∈ V

yi :=

{
1, if i ∈ X

0, else
.

Furthermore, consider G− := G(V \ X), the graph without nodex X. For every
B ⊆ V with at least 2 nodes, we set

zB :=

{
1, if B is maximal connected component in G−

0, else
.

This solution is feasible, because now every edge is covered either by a node i ∈ X,
or otherwise is part of one of the connected components of G−, thus satisfying our
only dual constraint. It remains to show its optimality via strong duality - it holds
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that

1Tx = |M | = 1

2
(|N |+ |X| − oc(X))

= |X|+ 1

2
(|N −X| − oc(X))

= 1T y +
1

2
(|N −X| − oc(X)).

What is left is to show 1
2 (|N − X| − oc(X)) =

∑
B is cc in G−

⌊
|B|
2

⌋
zB . Note that

every node of G− is in exactly one connected component, so our sum on the right
side is at most 1

2 |N −X|. It holds that⌊
|B|
2

⌋
=

{
|B|
2 , B is even-sized

|B|−1
2 , B is odd-sized,

.

Because oc(X) is based on G− by construction, this immediately yields the part we
need to subtract from |N −X|, proving optimality.

Exercise 7.2. TBD
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Exercise 8.1. TBD

Exercise 8.2. Observe that G has a T -join if and only if all connected components
of G have a T -join. So it suffices to show the case when G is connected.

Now suppose that G has a T -join J ⊆ E. Consider

a :=
∑
v∈T

degJ(v) and b :=
∑

v∈N−T

degJ(v).

The term a + b precisely double-counts the cardinality of J . Hence, a + b is even.
Since b is a sum of even addends it also must be even. We can follow that a = a+b−b
is even. Finally, because all summands of a are odd there must be an even number
of elements in T .

Assume conversely T to have even cardinality 2t and let v1, . . . v2t be the distinct
nodes of T . For G is connected there exists a path Pi connecting vi and vi+t for all
i = 1 . . . t. Now define J to be the edges of E occurring in an odd number of these
t paths. For every i ∈ [t] the sum

t∑
j=1

degPj
(vi) = degPi

(vi) +

t∑
j=1,j ̸=i

degPj
(vi) = 1 +

t∑
j=1,j ̸=i

degPj
(vi)

is odd because for every i ∈ [i]\{j} the addend degPj
(vi) is either 0 or 2. Analogously,

we can argue that this sum is also odd for all the other nodes of T and even for all
nodes not in T . By construction of J we have

degJ(v) ≡
t∑

j=1

degPj
(v) mod 2

for all nodes v ∈ N . This shows that J is a T -join.

Exercise 8.3. We prove:

(a) Let J be a T -join and S ⊆ V . Then the sum of all degrees of S limited to J is:∑
v∈S

δJ(v) =
∑

v∈S∩T

δJ(v) +
∑

v∈S\T

δJ(v)

≡ |S ∩ T | · 1 + 0

≡ |S ∩ T | (mod 2)

Thus, |δ(S) ∩ J | must have the same parity as |S ∩ T |, because otherwise the
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theoretical sum of degrees of G(S) would be odd. This would contradict that
the sum of all degrees in a (sub-)graph must be always even!

J ∩ δ(S) is non-empty because |S ∩ T | has odd parity by definition.

(b) We prove both directions.

“⇒” Suppose F includes a T -join J . Consider the T -cut of a T -odd S ⊆ V .
By (a), F ∩ δ(S) ⊇ J ∩ δ(S) ̸= ∅.

“⇐” Suppose F has only non-empty intersections with T -cuts. We construct
a T -join J ⊆ F as follows:
Algorithm 6: Construct T -join
J ← ∅
U ← ∅
while v ∈ T − U do

S ← {v}
K ← ∅
while true do

Choose any (u,w) ∈ δ(S) ∩ F
S ← S + u
K ← K + (u,w) if w ∈ U then

Add any node reachable from w via J to S and corresponding edges
to K

end
if w ∈ T then

U ← U + {v, w}
Let P ⊆ K be the (unique) path from v to w
J ← J∆P
break

end
end

end

We start from any unused node v ∈ T and construct a path to another
unused node in T by repeatedly adding any edge in F from the T -cut
formed by all visited nodes S. For this, we need to assure S is always
T -odd: If our new node is in T , but used, we need to repair our T -odd-
property of S by adding all nodes in the connected component of our
partial solution J . In particular, there must be an even number of nodes
in this component we add.

Therefore, our algorithm is well-defined and terminates.

It is clear that our final J ⊆ F . Furthermore, by Lemma 4.104, our partial
J is always a T -join for U (because P is a T -join for {u,w}). Thus, in
the end we have T = U and J is a T -join. (This feels more complicated
than necessary...)
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Any feasible solution now has a non-empty intersection with any T -cut, there-
fore the solution contains a T -join. Because we only have non-negative costs,
an optimal solution does not need any edges that aren’t part of the included T -
join. Since every T -join is also feasible by our theorem, an optimal IP-solution
is also a minimal T -join.

(c) We prove both directions.

“⇒” Suppose F includes a T -cut δ(S). Consider a T -join J , then F ⊇ δ(S) ⊇
δ(S) ∩ J ̸= ∅.

“⇐” We prove the contraposition: Suppose F does not include a T -cut. Then,
for every T -cut δ(S) it holds δ(S)∩ (E−F ) is non-empty. By (b), E−F
includes a T -join J . Therefore, J ∩ F = ∅.
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Exercise 9.1. TBD

Exercise 9.2. We derive:

(a) We start with (2, 1)-matchings. Because b ≡ 2, for every subset H ⊆ N it
holds that b(H) is even, therefore for D ⊆ δ(H) it follows b(H) + u(D) is odd
iff |D| is odd. Furthermore, it holds that⌊

b(H) + u(D)

2

⌋
=

⌊
2|H|+ |D|

2

⌋
= |H|+

⌊
|D|
2

⌋
.

In summary, both sets of constraints are equivalent.

Consider now (1, 1)-matchings. We can easily see that blossom constraints
form a subset of our b-matching constraints if for odd H ⊆ N we choose
D = ∅ ⊆ δ(H). It remains to show every other b-matching constraint is
redundant. Let H ⊆ N and D ⊆ δ(H) such that |H|+ |D| is odd. Let

HD := {j | (i, j) ∈ D ∧ i ∈ H}

be the set of outside-nodes directly connected by D. HD is empty iff D is
empty, which is the case already considered. For some v ∈ HD ̸= ∅, define

H ′ :=

{
H ∪HD if |H ∪HD| odd
H ∪HD − v if |H ∪HD| even

.

Then, H ′ is odd and generates a blossom constraint. Consider the second case
(the first case works analogous):

x(E(H)) + x(D) ≤ x(E(H ∪HD)) = x(E(H ′ + v))

≤ x(E(H ′)) + 1 ≤
⌊
|H ′|
2

⌋
+ 1

=
|H ′|+ 1

2
=
|H|+ |HD|

2

≤
⌊
|H|+ |D|

2

⌋
=

⌊
b(H) + u(D)

2

⌋
This shows that the blossom constraints suffice to make every b-constraint
feasible.
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(b) Given a (b, u)-matching and H,D as specified. Recall our LP constraints:

x(δ(v)) = bv, ∀v ∈ N (15)
xe ≤ ue, ∀e ∈ E (16)
xe ≥ 0, ∀e ∈ E (17)

Consider following row-multiplied expressions:∑
i∈H

(15) ≡ 2 · x(E(H)) + x(δ(H)) = b(H)∑
e∈D

(16) ≡ x(D) ≤ u(D)

−
∑

e∈δ(H)\D

(17) ≡ −x(δ(H) \D) ≤ 0

Summing everything up and dividing by two yields

x(E(H)) + x(D) ≤ b(H) + u(D)

2

as wished. In particular, every LHS coefficient is integral. Therefore, all Chvá-
tal conditions are satisfied, and we get our b-matching constraint as a cutting
plane.
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10. exercise sheet

Exercise 10.1. TBD

Exercise 10.2. We proof by induction over k ≥ 3: If Ck = {1, . . . , k} is a clique in
a graph G = (V,E), then ∑

j∈Ck

xj ≤ 1

can be derived as a valid CP for the integer hull of the Max Stable set problem using
Chvátal cuts.

For k = 3:
1/2× ( x1 +x2 ≤ 1)
1/2× ( x2 +x3 ≤ 1)
1/2× ( x1 +x3 ≤ 1)

x1 +x2 +x3 ≤ 1.5

This satisfies all Chvátal conditions, and thus

x1 + x2 + x3 ≤ 1 = ⌊1.5⌋

is a valid cutting plane.

Suppose we already have Chvátal derivation for some k ≥ 3. We prove that we can
also find a derivation for any clique Ck+1. Since subsets of cliques are itself cliques,
we can use Ck+1 \ {1} and Ck+1 \ {k + 1} and derive by our inductive assumption
that

1/2× ( x1 +x2 . . . +xk ≤ 1)
1/2× ( x2 . . . +xk +xk+1 ≤ 1)
1/2× ( x1 +xk+1 ≤ 1)

x1 +x2 . . . +xk +xk+1 ≤ 1.5

and immediately get our constraint we wanted to derive by rounding down again.
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11. exercise sheet

Exercise 11.1. TBD

Exercise 11.2. We derive the Gomory cuts as discussed for each basic variable as

0.7x2 +0.2x3 +0.6x4 ≥ 0
0.0x2 +0.1x3 +0.5x4 ≥ 0.1
0.2x2 +0.5x3 +0.0x4 ≥ 0.7

Note the first constraint is useless and can be dropped.
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B Programming Project
In this section we will solve TSP instances. For the project, we used Gurobi with its
Python-API in a Jupyter Notebook, see subsection B.3

B.1 First instance
First, have a look at our “good” graph (V,EG):

Al

Au

Fl

Ga

Ky

LS

MS

OM

Tn

Vb

160

444

272

455

322

88

172

312
238

297

200

419

186

279

362
350

335

397

351

396

208
295477

189
217

286

296

110

384
266

404
248

178

Solving following LP

min
x

∑
e∈EG

xe

s.t.
∑

{i,j}∈δ(i)

x{i,j} = 2, ∀i ∈ V,

x ≤ 1,

x ≥ 0,

i.e. using only degree constraints, we get:
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Al

Au

Fl

Ga

Ky

LS

MS

OM

Tn

Vb

1.0

1.0

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

We see three subtours which we will eliminate by adding corresponding subtour con-
straints ∑

e∈δ(S)

xe ≥ 2, ∀S ∈ {{LS,OM,MS,Al}, {Vb,Ky,Tn}, {Au,Ga,Fl}, }

and get an integral Hamiltonian tour:

Al

Au

Fl

Ga

Ky

LS

MS

OM

Tn

Vb

1.0

1.0

1.0
1.0

1.0

1.0
1.0

1.0

1.0

1.0

Adding back all edges V and modifying the constraints to include the new edges does
indeed not generate a better solution:
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Al

Au

Fl

Ga

Ky

LS

MS

OM

Tn

Vb

1.0

1.0

1.0
1.0

1.0

1.0
1.0

1.0

1.0

1.0

The total length of the optimal integral Hamilton tour is thus 2324 .

B.2 Second instance
First, have a look at our “good” graph (V,EG):

a

b c

d

ef

g

h
i

j

k

34

26

22

43

33

20

24
28

26

20

37

21
20

45
44

39
36

45

Solving following LP

min
x

∑
e∈EG

xe

s.t.
∑

{i,j}∈δ(i)

x{i,j} = 2, ∀i ∈ V,

x ≤ 1,

x ≥ 0,

i.e. using only degree constraints, we get:
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a

b c

d

ef

g

h
i

j

k

1.0

1.0

1.0

1.0

1.0
1.0

1.0
1.0

1.0

1.0

1.0

We see two subtours which we will eliminate by adding corresponding subtour constraints∑
e∈δ(S)

xe ≥ 2, ∀S ∈ {{b, a, f, i, h, g}, {c,d, e, j, k}, }

and get following integral Hamiltonian path:

a

b c

d

ef

g

h
i

j

k

1.0

1.0

1.0

1.0
1.0

1.0

1.0

1.0

1.0

1.0

1.0

However, if we add all edges now, we get a non-integral solution

a

b c

d

ef

g

h
i

j

k

0.5

0.5

1.0

0.5

1.0

1.0
1.0

1.0
1.0

1.0

0.5

0.5

0.5

1.0
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Therefore we add 2-matching constraints

x(E(H)) + x(D) ≤ 4, H = {b, a, f}, D = {{a, g}, {b, i}, {f, h}}
x(E(H)) + x(D) ≤ 4, H = {h, g, k}, D = {{a, g}, {f, h}, {d, k}}

and still get a non-integral solution

a

b c

d

ef

g

h
i

j

k

1.0

1.0

0.5

0.5

1.0

1.0
0.5

1.0
1.0

1.0

0.5

0.5

0.5

0.5

0.5

We add even more 2-matching constraints

x(E(H)) + x(D) ≤ 4, H = {b, c, e}, D = {{b, i}, {e, j}, {c, d}}
x(E(H)) + x(D) ≤ 7, H = {h, g, k, i, j}, D = {{a, g}, {f,h}, {d, k}, {b, i}, {e, j}}

and finally get

a

b c

d

ef

g

h
i

j

k

1.0

1.0

1.0

1.0

1.0
1.0

1.0
1.0

1.0 1.0

1.0

The total length is 319 .

B.3 Code
See the folder exercises/code in our project.
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α-Approximation, 64

Alternating, 51
Alternating tree, 54
approximation

fixed factor, 64
FPTAS, 64
PTAS, 64

Augmenting, 51

Big-M method, 7
righthandside, 8
upper bound, 8

big-O, 11
Blossom constraints, 50, 57

Certificate, 12
certificate

succinct, 12
Chinese Postman Problem, 58
Chvátal, 68
Chvátal proof, 66
Chvátal rank, 68
Circuit, 45
circuit

fundamental, 46
Clique, 11
Connected components, 33
Consecutive ones-property, 31
Convex conjugate, 27
Cramer’s Rule, 29
Cutting Plane

Chvátal Cut, 66
Gomory Cut, 66

Diophantine equation, 24

Ellipsoid method, 19
Euler Tour, 58
Eulerian, 58
Excess cap, 73
Exposed, 51
Extended cover, 72
Extended matching, 52
Extensibility, 38

Facet-inducing, 68, 72
Farkas’ Lemma, 23, 25
Flow cover, 73

Gaussian Elimination, 23
Gomory Mixed Integer Cuts, 69
Gourdan’s Theorem, 25
Greedy, 37

Hermite Normal Form, 24

Independence system, 38
Independent set, 16
Integer hull, 6
Integer Programming, 6

binary, 6
mixed, 6
pure, 6

Integral, 43

Königsberg Bridge Problem, 58
Kilter diagram, 27
Knapsack cover, 71
Kruskal’s algorithm, 32

Lifted cover constraint, 73

Marginal cost, 34
Matroid, 38
Minimal, 71
Minimal Spanning Tree, 32
Minkowski’s Theorem, 21
Mixed Integer Rounding, 69

Nested, 34
Network matrix, 29
Node cover, 15
NP, 12

co-NP, 18
coNP-complete, 18
hard, 18

NP-complete, 15
strongly, 17
weakly, 17

objective function
piecewise linear, 9
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Partial augmentation, 48
partition, 17

3-partition, 17
Polar, 20
polyhedron

H-representation, 21
V-representation, 21

Polymatroid, 41
polymatroid

rank function, 41
Postal Delivery Problem, 58
problem types

decision, 11
optimization, 11, 19

Rank function, 38
reduction, 14

Yes-preserving, 14
Resolution Theorem, 21

Satisfiability problem, 13
satisfiability problem

3-satisfiability, 15
separation problem, 19
Shortcut-free, 47
Split Cut, 70
Stable set, 16
Subdifferential, 26
Submodular, 34

T-even, 61
T-odd, 61
Template cuts, 70
Theorem of the Alternative, 23
Totally dual integral, 43
Totally unimodular, 29
Tree-path, 29
Tutte-Berge, 51

Variable upper bounds, 73
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